Skip to main content

Fundamental algorithms for scientific computing in Python

Project description

https://raw.githubusercontent.com/scipy/scipy/main/doc/source/_static/logo.svg https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A https://img.shields.io/pypi/dm/scipy.svg?label=Pypi%20downloads https://img.shields.io/conda/dn/conda-forge/scipy.svg?label=Conda%20downloads https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg https://img.shields.io/badge/DOI-10.1038%2Fs41592--019--0686--2-blue.svg

SciPy (pronounced “Sigh Pie”) is an open-source software for mathematics, science, and engineering. It includes modules for statistics, optimization, integration, linear algebra, Fourier transforms, signal and image processing, ODE solvers, and more.

SciPy is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines, such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

For the installation instructions, see our install guide.

Call for Contributions

We appreciate and welcome contributions. Small improvements or fixes are always appreciated; issues labeled as “good first issue” may be a good starting point. Have a look at our contributing guide.

Writing code isn’t the only way to contribute to SciPy. You can also:

  • review pull requests

  • triage issues

  • develop tutorials, presentations, and other educational materials

  • maintain and improve our website

  • develop graphic design for our brand assets and promotional materials

  • help with outreach and onboard new contributors

  • write grant proposals and help with other fundraising efforts

If you’re unsure where to start or how your skills fit in, reach out! You can ask on the forum or here, on GitHub, by leaving a comment on a relevant issue that is already open.

If you are new to contributing to open source, this guide helps explain why, what, and how to get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.14.0.tar.gz (58.6 MB view details)

Uploaded Source

Built Distributions

scipy-1.14.0-cp312-cp312-win_amd64.whl (44.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

scipy-1.14.0-cp312-cp312-musllinux_1_1_x86_64.whl (40.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

scipy-1.14.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (40.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scipy-1.14.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (35.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

scipy-1.14.0-cp312-cp312-macosx_14_0_x86_64.whl (25.6 MB view details)

Uploaded CPython 3.12 macOS 14.0+ x86-64

scipy-1.14.0-cp312-cp312-macosx_14_0_arm64.whl (23.1 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

scipy-1.14.0-cp312-cp312-macosx_12_0_arm64.whl (29.9 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

scipy-1.14.0-cp312-cp312-macosx_10_9_x86_64.whl (39.2 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

scipy-1.14.0-cp311-cp311-win_amd64.whl (44.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

scipy-1.14.0-cp311-cp311-musllinux_1_1_x86_64.whl (41.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

scipy-1.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (41.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scipy-1.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (35.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scipy-1.14.0-cp311-cp311-macosx_14_0_x86_64.whl (25.5 MB view details)

Uploaded CPython 3.11 macOS 14.0+ x86-64

scipy-1.14.0-cp311-cp311-macosx_14_0_arm64.whl (23.1 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

scipy-1.14.0-cp311-cp311-macosx_12_0_arm64.whl (29.9 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scipy-1.14.0-cp311-cp311-macosx_10_9_x86_64.whl (39.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scipy-1.14.0-cp310-cp310-win_amd64.whl (44.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

scipy-1.14.0-cp310-cp310-musllinux_1_1_x86_64.whl (41.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

scipy-1.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (41.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scipy-1.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (35.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scipy-1.14.0-cp310-cp310-macosx_14_0_x86_64.whl (25.5 MB view details)

Uploaded CPython 3.10 macOS 14.0+ x86-64

scipy-1.14.0-cp310-cp310-macosx_14_0_arm64.whl (23.1 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

scipy-1.14.0-cp310-cp310-macosx_12_0_arm64.whl (29.9 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scipy-1.14.0-cp310-cp310-macosx_10_9_x86_64.whl (39.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file scipy-1.14.0.tar.gz.

File metadata

  • Download URL: scipy-1.14.0.tar.gz
  • Upload date:
  • Size: 58.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.13

File hashes

Hashes for scipy-1.14.0.tar.gz
Algorithm Hash digest
SHA256 b5923f48cb840380f9854339176ef21763118a7300a88203ccd0bdd26e58527b
MD5 b410bb9751ee049a37152f3ee1a3f898
BLAKE2b-256 4ee50230da034a2e1b1feb32621d7cd57c59484091d6dccc9e6b855b0d309fc9

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: scipy-1.14.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 44.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.13

File hashes

Hashes for scipy-1.14.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 4c4161597c75043f7154238ef419c29a64ac4a7c889d588ea77690ac4d0d9b20
MD5 4c79c96618ecf58b91f107608af6fc8a
BLAKE2b-256 3f72305686527c68f33f1dd3ebdd28f53340d372b2f9e44dccaf6f92e17739d3

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.14.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 65df4da3c12a2bb9ad52b86b4dcf46813e869afb006e58be0f516bc370165159
MD5 14a05ca1944bd43fd787aae16871cc4c
BLAKE2b-256 45ed75f5d318cf7af841835cec9534704d3a4cb6a96460677f05466c928790a7

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.14.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a01cc03bcdc777c9da3cfdcc74b5a75caffb48a6c39c8450a9a05f82c4250a14
MD5 9b369874c2a1f3f2438a519582d775e3
BLAKE2b-256 9b00ce54410e344b3a6032cd42ed53fe425cf57a66d28e337670292bbb419ebc

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.14.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d91db2c41dd6c20646af280355d41dfa1ec7eead235642178bd57635a3f82209
MD5 6d31a00cb94033c27ab43a91917461bc
BLAKE2b-256 240ec7812fbfa1e29e26cd28c6972be43e3fe49427c5f1663c4b992c431e247d

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.14.0-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 7d3da42fbbbb860211a811782504f38ae7aaec9de8764a9bef6b262de7a2b50f
MD5 96578d148e7b0816f8dd43f706055587
BLAKE2b-256 f21e41e1a295dc54d21f6a6b2ff5e85e398b5aea076cf69fdedbc943b9c73b2d

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.14.0-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 64b2ff514a98cf2bb734a9f90d32dc89dc6ad4a4a36a312cd0d6327170339eb0
MD5 3cd1e83501df5c84da5d8691ccf35432
BLAKE2b-256 09705e756d3f90fe3fff64d1550db0fa6bb9eb76eedd084c568618f93441f08c

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.14.0-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 bbc0471b5f22c11c389075d091d3885693fd3f5e9a54ce051b46308bc787e5d4
MD5 a96fdb22e0cbd76c04484369e494f382
BLAKE2b-256 5c76f2b91ea2d2b76504e845699271be9c0ca3492770614fb6b911fb517023de

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.14.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bff2438ea1330e06e53c424893ec0072640dac00f29c6a43a575cbae4c99b2b9
MD5 27c569e19ad976b68bb9d93cc5b0b780
BLAKE2b-256 50513aa6bcde60dec542c6b8363b6a871b02827a41f01ab9c0c9324464f8c4cd

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: scipy-1.14.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 44.7 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.13

File hashes

Hashes for scipy-1.14.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5b083c8940028bb7e0b4172acafda6df762da1927b9091f9611b0bcd8676f2bc
MD5 23066ca452c70a1d2d64fd907a995850
BLAKE2b-256 911d0484130df7e33e044da88a091827d6441b77f907075bf7bbe145857d6590

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.14.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c40003d880f39c11c1edbae8144e3813904b10514cd3d3d00c277ae996488cdb
MD5 58fb3a83d15115083793ecbc619b603a
BLAKE2b-256 c4c6b7a0774808a0f65bd3bba4558c8d6b90c24e852656087045a0a7ada24868

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9e3154691b9f7ed73778d746da2df67a19d046a6c8087c8b385bc4cdb2cfca74
MD5 a2c00f4b765cf117d24351d73589de15
BLAKE2b-256 89bb80c9c98d887c855710fd31fc5ae5574133e98203b3475b07579251803662

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9eee2989868e274aae26125345584254d97c56194c072ed96cb433f32f692ed8
MD5 83ba389365c1b904254411f82e70d4b5
BLAKE2b-256 6cbbf44e22697740893ffa84239ca3766bdb908c1c7135ebb272d5bd4bdc33e2

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.14.0-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 a7d46c3e0aea5c064e734c3eac5cf9eb1f8c4ceee756262f2c7327c4c2691c86
MD5 e4da5d38b6133584ee1bda75b44db543
BLAKE2b-256 6ad6db686519059afb367e5a06935556b50fa422d792a658ce071f4527c785bf

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.14.0-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 94c164a9e2498e68308e6e148646e486d979f7fcdb8b4cf34b5441894bdb9caf
MD5 a62622c30afe7e96f2608163604daf94
BLAKE2b-256 8bd278e3342f5db363ddf92de84007d43e47c8bb24363bd509e1b75a5102a25d

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.14.0-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 f0a50da861a7ec4573b7c716b2ebdcdf142b66b756a0d392c236ae568b3a93fb
MD5 353709e3cc2658e2cf17c32a16ec400c
BLAKE2b-256 56951a3a04b5facab8287325ad2335dbb6b78b98d73690c832099c9c498f7a4d

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.14.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6d056a8709ccda6cf36cdd2eac597d13bc03dba38360f418560a93050c76a16e
MD5 feb6f21b37e520a27f7e03e94662e89e
BLAKE2b-256 1055d6096721c0f0d7e7369da9660a854c14e6379ab7aba603ea5d492d77fa23

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: scipy-1.14.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 44.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.13

File hashes

Hashes for scipy-1.14.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ad36af9626d27a4326c8e884917b7ec321d8a1841cd6dacc67d2a9e90c2f0359
MD5 cb915b3ef1fcdcc9234f13c643cd8840
BLAKE2b-256 a30c82c1330c08f31d61142d38cb9a185e01c2403c990d10dab208032e62d0fa

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.14.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 176c6f0d0470a32f1b2efaf40c3d37a24876cebf447498a4cefb947a79c21e9d
MD5 87591da021b1fb9e77e78afb6974e2c2
BLAKE2b-256 dfa28721f93fbf98a69067d20bdfded36a7de2a3d811f192edba9eeefbde61b8

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 42470ea0195336df319741e230626b6225a740fd9dce9642ca13e98f667047c0
MD5 2ddddac57b0c609a5f36621210a532b1
BLAKE2b-256 e22015c8fe0dfebb6facd81b3d08bf45dfa080e305deb17172b0a40eba59e927

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 076c27284c768b84a45dcf2e914d4000aac537da74236a0d45d82c6fa4b7b3c0
MD5 891aa02d4b0d04b104ce95b03d5ab1d1
BLAKE2b-256 57b8ca969a99d34956c6546cbb9ea3f863a387009f68cdbad13cdb07db0cc23d

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp310-cp310-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.14.0-cp310-cp310-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 6a9c9a9b226d9a21e0a208bdb024c3982932e43811b62d202aaf1bb59af264b1
MD5 7ce769018d12c87e2cb600fd84c60223
BLAKE2b-256 5c639954d14012a2f4aff4570f1aaf076d7f65f3fc246ae4483b765488d57d51

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.14.0-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 07e179dc0205a50721022344fb85074f772eadbda1e1b3eecdc483f8033709b7
MD5 3415b9d093eb7f72386028e698e2a259
BLAKE2b-256 522105a182fb405a53dfbdf6415308bf185677e89188bc2206de011a3653f48e

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.14.0-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 687af0a35462402dd851726295c1a5ae5f987bd6e9026f52e9505994e2f84ef6
MD5 f21ad4913ffa46225f5cf15c0b2da7e3
BLAKE2b-256 6ea10093566d31ae662e942d4079e2a4dea4256723bf3d072ae67f5ba41aee0d

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.14.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.14.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7e911933d54ead4d557c02402710c2396529540b81dd554fc1ba270eb7308484
MD5 c2eab85d1e04480cb049d95622632e80
BLAKE2b-256 c690face72921ce52d74880b380e6f86b3caa6c65766c5808fbe179e208b9c6d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page