Skip to main content

SciPy: Scientific Library for Python

Project description

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and engineering. The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.7.0.tar.gz (36.1 MB view details)

Uploaded Source

Built Distributions

scipy-1.7.0-cp39-cp39-win_amd64.whl (33.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

scipy-1.7.0-cp39-cp39-win32.whl (30.5 MB view details)

Uploaded CPython 3.9 Windows x86

scipy-1.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (27.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scipy-1.7.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (28.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ x86-64

scipy-1.7.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (25.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

scipy-1.7.0-cp39-cp39-macosx_10_9_x86_64.whl (32.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

scipy-1.7.0-cp38-cp38-win_amd64.whl (33.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

scipy-1.7.0-cp38-cp38-win32.whl (30.5 MB view details)

Uploaded CPython 3.8 Windows x86

scipy-1.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (27.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

scipy-1.7.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (28.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ x86-64

scipy-1.7.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (25.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

scipy-1.7.0-cp38-cp38-macosx_10_9_x86_64.whl (31.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

scipy-1.7.0-cp37-cp37m-win_amd64.whl (33.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

scipy-1.7.0-cp37-cp37m-win32.whl (30.4 MB view details)

Uploaded CPython 3.7m Windows x86

scipy-1.7.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (27.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

scipy-1.7.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (28.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ x86-64

scipy-1.7.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (25.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

scipy-1.7.0-cp37-cp37m-macosx_10_9_x86_64.whl (31.9 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file scipy-1.7.0.tar.gz.

File metadata

  • Download URL: scipy-1.7.0.tar.gz
  • Upload date:
  • Size: 36.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.7.0.tar.gz
Algorithm Hash digest
SHA256 998c5e6ea649489302de2c0bc026ed34284f531df89d2bdc8df3a0d44d165739
MD5 8776cb3e803f07c74ddf1045eb177904
BLAKE2b-256 bbbb944f559d554df6c9adf037aa9fc982a9706ee0e96c0d5beac701cb158900

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.7.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.7.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 33.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.7.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 aef6e922aea6f2e6bbb539b413c85210a9ee32757535b84204ebd22723e69704
MD5 daf4ab11d37576bd792ece587e8f7ae6
BLAKE2b-256 031e414a1ade6a0d2fb6268e7cf07a862374f311b2af2e410b3bba73a74da1c8

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.7.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: scipy-1.7.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 30.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.7.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 5a983d3cebc27294897951a494cebd78af2eae37facf75d9e4ad4f1f62229860
MD5 89499df789ff766d6140ab50b8a56745
BLAKE2b-256 db1550c834807c32c59aaa0fbb95e06d6a3be56f652584349a579332fa51a34c

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7f4b89c223bd09460b52b669e2e642cab73c28855b540e6ed029692546a86f8d
MD5 003d015e6c75d683f8e27e80d731f782
BLAKE2b-256 eaa37a1578d2d8862fc586c88732415acd837cf03f9dbcfea5d9ffe0dff57712

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.7.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

  • Download URL: scipy-1.7.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
  • Upload date:
  • Size: 28.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.5+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.7.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3595c8b64970c9e5a3f137fa1a9eb64da417e78fb7991d0b098b18a00b776d88
MD5 ed943492a5f97a086c96b6d158028ba4
BLAKE2b-256 56a0860e74336b7685f89f127705d7bf968e5deedff3459fc34fcc7ee8086bb5

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.7.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: scipy-1.7.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 25.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.7.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 2e685fdbfa5b989af4338b29c408b9157ea6addec15d661104c437980c292be5
MD5 9306001377da7b018ac0215eed2ba022
BLAKE2b-256 690b6f7ca27b5d89e3c798c2039de4d44861fb6a9fbd8b99bbe1387e692407f8

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.7.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scipy-1.7.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 32.1 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.7.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5eb8f054eebb351af7490bbb57465ba9662c4e16e1786655c6c7ed530eb9a74e
MD5 535e0df93c3005acb69cf32eed57e5d7
BLAKE2b-256 ed8c061178d1159738b7897e5ec11655263d4717472d7e52de1d0c729e6b4147

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.7.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scipy-1.7.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 33.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.7.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c5d012cb82cc1dcfa72609abaabb4a4ed8113e3e8ac43464508a418c146be57d
MD5 330c71d5ae61a6f1a96573ee5e2dc536
BLAKE2b-256 a7f62f8af9e7323f5a4dd45b44fcaa45dfbc7faacf6cc2c3e31530ab8e25212d

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.7.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: scipy-1.7.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 30.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.7.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 97ca4552ace1c313707058e774609af59644321e278c3a539322fab2fb09b943
MD5 08a560d8f936ea64d65471382d829b43
BLAKE2b-256 28097ea67eaffab8276936ff01b255a692a86aef7380b678eb0a17b6c34cb531

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bd4399d4388ca0239a4825e312b3e61b60f743dd6daf49e5870837716502a92a
MD5 e2e369078c6b7ca29c952cb9971bc154
BLAKE2b-256 d08d3dbb59d78218b6a76f1ddb55db60ea5459fa7968655acb21252a59a10bc3

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.7.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

  • Download URL: scipy-1.7.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
  • Upload date:
  • Size: 28.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.5+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.7.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6130e22bf6ee506f7cddde7e0515296d97eb6c6c94f7ef5103c2b77aec5833a7
MD5 092c9b3117c2acc378be46fac846b088
BLAKE2b-256 ba34f93aaf9612a1e1acb4d610440ae3fd9881755f66daefd7c4e5bf271a9cdb

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.7.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: scipy-1.7.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 25.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.7.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 80df8af7039bce92fb4cd1ceb056258631b11b3c627384e2d29bb48d44c0cae7
MD5 2f4d2c55937133983031428405ef50e5
BLAKE2b-256 172f95302267a75d4dae2740957dca9490f00f560f56f0fdaff988936421b909

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.7.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scipy-1.7.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 31.9 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.7.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4ef3d4df8af40cb6f4d4eaf7b02780109ebabeec334cda26a7899ec9d8de9176
MD5 ac0f5c087893240b13a78dbc80e002e1
BLAKE2b-256 232f6f3f54e9e28f21f3be6630c6efc3cc90c420989e0e62bc9a29028e5d2577

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.7.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scipy-1.7.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 33.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.7.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e7b733d4d98e604109715e11f2ab9340eb45d53f803634ed730039070fc3bc11
MD5 767b17455eba48cbe3949a4a8609d9e7
BLAKE2b-256 4542fc32b88f0dd6e9dad2850766b7a35024ee5df6a99c5f0836f9d5455d1fde

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.7.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: scipy-1.7.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 30.4 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.7.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 53116abd5060a5b4a58489cf689bee259b779e6b7ecd4ce366e7147aa7c9626e
MD5 c4b23f53f47888744713a25000ed73fd
BLAKE2b-256 66f29f6fea36c2b5bdad5e269bf8ae0c562fba52b568acf5aeb5732250ecd5b8

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.7.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.7.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3e7df79b42c3015058a5554bfeab6fd4c9906c46560c9ddebb5c652840f3e182
MD5 8149ae5442d3ca11d477893b9797b565
BLAKE2b-256 e2054a5f4c540bad116f5924608bd9e2890b1841d78ab0b5b438da912cceb7db

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.7.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

  • Download URL: scipy-1.7.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
  • Upload date:
  • Size: 28.5 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.5+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.7.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b77ee5e3a9507622e7f98b16122242a3903397f98d1fe3bc269d904a9025e2bc
MD5 6f9b11e29d59e276729ec706c38961e2
BLAKE2b-256 b285b00f13b52d079b5625e1a12330fc6453c947a482ff667a907c7bc60ed220

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.7.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: scipy-1.7.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 25.4 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.7.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 0572256c10ddd058e3d315c555538671ddb2737f27eb56189bfbc3483391403f
MD5 32d249d21ec09fe351b471cd578a54bd
BLAKE2b-256 81a9f7c2e297edcfaa970493cf5db49ef89d095eba4410e24ff0554ffc016390

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.7.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scipy-1.7.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 31.9 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.7.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 821e75f5c16cd7b0ab0ffe7eb9917e5af7b48c25306b4777287de8d792a5f7f3
MD5 276042cf01da2970b83883375b036eef
BLAKE2b-256 5a000569c9566c8d758af25cb3b70af68b28df5c6d549d78135ac127edfb581e

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page