Skip to main content

SciPy: Scientific Library for Python

Project description

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and engineering. The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.8.0rc1.tar.gz (88.5 MB view details)

Uploaded Source

Built Distributions

scipy-1.8.0rc1-cp310-cp310-win_amd64.whl (107.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

scipy-1.8.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (103.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scipy-1.8.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (102.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scipy-1.8.0rc1-cp310-cp310-macosx_12_0_universal2.whl (116.5 MB view details)

Uploaded CPython 3.10 macOS 12.0+ universal2 (ARM64, x86-64)

scipy-1.8.0rc1-cp310-cp310-macosx_12_0_arm64.whl (89.6 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scipy-1.8.0rc1-cp310-cp310-macosx_11_0_arm64.whl (89.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

scipy-1.8.0rc1-cp310-cp310-macosx_10_9_x86_64.whl (96.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scipy-1.8.0rc1-cp39-cp39-win_amd64.whl (104.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

scipy-1.8.0rc1-cp39-cp39-win32.whl (101.2 MB view details)

Uploaded CPython 3.9 Windows x86

scipy-1.8.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (103.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scipy-1.8.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (101.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scipy-1.8.0rc1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (99.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

scipy-1.8.0rc1-cp39-cp39-macosx_12_0_universal2.whl (116.5 MB view details)

Uploaded CPython 3.9 macOS 12.0+ universal2 (ARM64, x86-64)

scipy-1.8.0rc1-cp39-cp39-macosx_12_0_arm64.whl (89.6 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scipy-1.8.0rc1-cp39-cp39-macosx_11_0_arm64.whl (89.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

scipy-1.8.0rc1-cp39-cp39-macosx_10_9_x86_64.whl (98.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

scipy-1.8.0rc1-cp38-cp38-win_amd64.whl (109.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

scipy-1.8.0rc1-cp38-cp38-win32.whl (105.9 MB view details)

Uploaded CPython 3.8 Windows x86

scipy-1.8.0rc1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (102.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

scipy-1.8.0rc1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (100.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

scipy-1.8.0rc1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (97.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

scipy-1.8.0rc1-cp38-cp38-macosx_12_0_universal2.whl (118.4 MB view details)

Uploaded CPython 3.8 macOS 12.0+ universal2 (ARM64, x86-64)

scipy-1.8.0rc1-cp38-cp38-macosx_12_0_arm64.whl (91.0 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

scipy-1.8.0rc1-cp38-cp38-macosx_11_0_arm64.whl (91.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

scipy-1.8.0rc1-cp38-cp38-macosx_10_9_x86_64.whl (97.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file scipy-1.8.0rc1.tar.gz.

File metadata

  • Download URL: scipy-1.8.0rc1.tar.gz
  • Upload date:
  • Size: 88.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.8.0rc1.tar.gz
Algorithm Hash digest
SHA256 54adf5c1197d6c3de2e131dc71660bb11d4e449aff79c8c231bd05dc6ad307eb
MD5 1624779b49df8530e21791a9f938de75
BLAKE2b-256 c0ade3c052ed4e0027a8abef0a5e8441a044427d252d17d9aee06d56e62fc698

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: scipy-1.8.0rc1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 107.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.8.0rc1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ac80ce04b2f3a3594c9fc6d010a2cb40e3594b5dbf57356e7d95921a7fd01fbc
MD5 fd23b76e90487a5fd2b42bab2fe2ba81
BLAKE2b-256 c621ef11b601b11c6fda099540d19eca01601388a42550521d8a40c2a6898a2f

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.8.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 95fc10d0e6051503b40814d0ea1b5a57d0b2871b46097bda1b5429ea4c167ae9
MD5 dc358a0aabc125b305e016a1d56ca957
BLAKE2b-256 6def55ef0e6faaad2bf7cf47a163a5d998e1420b6bcced644f52039417b0e045

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.8.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b5e4c075f2eeb3c838bb0fcebe32715bfd6aa758fe81cf46b554dd2545b6de6c
MD5 c5a3998cff3aa2721f070f17d62c0537
BLAKE2b-256 6416b31f66ef5c8724b3ecbc62c56b489d6b41e6c289d3c890949a5f54585956

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp310-cp310-macosx_12_0_universal2.whl.

File metadata

  • Download URL: scipy-1.8.0rc1-cp310-cp310-macosx_12_0_universal2.whl
  • Upload date:
  • Size: 116.5 MB
  • Tags: CPython 3.10, macOS 12.0+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.8.0rc1-cp310-cp310-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 60aa8c2fdb95a08d675ee14bf61d9cd32b6eed216836442fb346bd8df5ff27d3
MD5 25aad9be558edb73990a0eb6c65bf502
BLAKE2b-256 f388b4db321e0af450041960c3fc90b9dd16c6583f522bd85a0ad1308191cfd0

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

  • Download URL: scipy-1.8.0rc1-cp310-cp310-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 89.6 MB
  • Tags: CPython 3.10, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.8.0rc1-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 72c2c6038be866eab207ce6d69e5969f5f8ca8214369a27e1dd34480a2e57228
MD5 0d74132f3d368087faeec6e1879ebfd9
BLAKE2b-256 b8103fba1d1a6d758f95733ad9e424c3ac11750157c31fbc049f4442f3592180

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: scipy-1.8.0rc1-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 89.6 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.8.0rc1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fbf7ff667020635f9cb3081762846a6b60682f803bb3d11a261826aaaf4f184e
MD5 5727ffb81086002661c623844759d44b
BLAKE2b-256 d20abea398396717548b3a24c6756aa349202b9cba12d001b5ab7a35f47adc03

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scipy-1.8.0rc1-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 96.5 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.8.0rc1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 19044a2dd62dd69113fe0846b3bce727bf6189c2a9bfb521fc05f8d1dbcd3c0f
MD5 d4b861387cd691631ad6706aadf84d22
BLAKE2b-256 ae21bfd8acd4515beea5dd40ac0f3f9ce4cb378449ed97801d6affe7fa57e3a5

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.8.0rc1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 104.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.8.0rc1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f3df298bf768a9c42d3faf137f209ecff17bcb187d481be4088f96b44028a853
MD5 f34a3b575feb2bc86ed4b84fd238e16f
BLAKE2b-256 1cb79ad486722a4257f92dbc95367db669da26de2b74a16d096378ed1a16fb87

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp39-cp39-win32.whl.

File metadata

  • Download URL: scipy-1.8.0rc1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 101.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.8.0rc1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 c0eeb6dd888a82a050ac4ab128a4db96813ebe7cd195991fd6f8b1e8c1e247ed
MD5 41deba65350e1d1595e602c3dd86095a
BLAKE2b-256 9cfc79cd611741ac52bb4b03a33bfcb04490314299c6596b6d047115ad17af6e

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.8.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 426a1e5143a150946efafaa6a9b2a3a5c59af87c38f9932ba9aca37baadb233e
MD5 59ce8d426280333350b0719fd55dc8c4
BLAKE2b-256 0d7e300f8029835d7ea99905526a6cdcdf9d29ff13dbe96c342e0753920c13df

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.8.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7d639d97483c85623361f12b9e3258a2ac68854da6807fcc6bd2823d55ebbd41
MD5 b4d3924e57ad95e672ea1d4ad4dcb8bd
BLAKE2b-256 399629fe7a9e54ec613d6d79f2bfd7daf2fed59d203f38d12536331057d2bebc

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for scipy-1.8.0rc1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 0196f0fb5a72d4eebb0eb266e5805a0c4e9f42a1c841cf6cba21d359576f489e
MD5 56dfda6eb1d5eab8952f6717aa9d4276
BLAKE2b-256 2a6a3ad1b6858eac0386460e63344d6b76e3be9bda21e7f7d79f70e99190104e

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp39-cp39-macosx_12_0_universal2.whl.

File metadata

  • Download URL: scipy-1.8.0rc1-cp39-cp39-macosx_12_0_universal2.whl
  • Upload date:
  • Size: 116.5 MB
  • Tags: CPython 3.9, macOS 12.0+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.8.0rc1-cp39-cp39-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 b6f1d78dc4e040e808e418ee2b16e144c90906222935f7d623cde350a5953b69
MD5 c5a902982235d5df5c06c2362d7440a9
BLAKE2b-256 b5acf2f145d7c43244f2aa5bce5139280487b32f03b994a850858ee272878547

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

  • Download URL: scipy-1.8.0rc1-cp39-cp39-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 89.6 MB
  • Tags: CPython 3.9, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.8.0rc1-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 8b5cdd6961787c5349052fc2effe73ca49c0180d10e47ac72e4a2a9ab1b18771
MD5 ecf16f23f69d4a4e42ec72e4a1a27cf7
BLAKE2b-256 7a6e10aa56b5e7b57283df8213f3e28a57124eaf3cc6236adc4421143561f108

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: scipy-1.8.0rc1-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 89.6 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.8.0rc1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 77be2ade875b8bcd6f8481e299d6519b4d7039d06b378b7a2e36d4624a3f9447
MD5 f2f23c3cebf53b9274cc00d5c8126ef1
BLAKE2b-256 463966e3e9091d8e7d31f0b98eb83d318f2503f6e1cbd3188bfdf8e4fc18bf36

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scipy-1.8.0rc1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 98.1 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.8.0rc1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7808b1dee5604622292d21e413d908814b950e5c6d60d0385beb2c88930b06c6
MD5 b39f08f5e2afe9d01a31d9393dd18ad6
BLAKE2b-256 eb22463a8103e71975ecdd3a1372ffc07bf5a898f6064eb8b0098fba80de9f8a

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scipy-1.8.0rc1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 109.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.8.0rc1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 de2467cfe00cc155d6885a4c3ca94362219d5152160c06f7ac63c60997101084
MD5 ece62ab1258cd9f6ea4494666055dbab
BLAKE2b-256 8bdfe22e0d7e46003bf9c066d7d5f22a821f5d20749872f1a0edfd804c4dd70d

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp38-cp38-win32.whl.

File metadata

  • Download URL: scipy-1.8.0rc1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 105.9 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.8.0rc1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 9c1f21dc7f057a21462f36fa53faa13ac05f29ef3ca7343b5faee34c7ebd09f1
MD5 0aa20560f4f497112c22ca923eb7165d
BLAKE2b-256 226a353509ce107405c26076888bd48f921ae0db0a0b965bf6dda89fdf586f98

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.8.0rc1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 054943205375a16c7bec62390f6136e899f66409d7cc33fb163a062104a753fa
MD5 7763fac8e5c0cc74e7518853d35f605e
BLAKE2b-256 c25ab9c6794f7a03bb2bc1d955b7e72522e4060e8dd0448e72bc82e6a2af2ae8

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.8.0rc1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7a0ecf486d9aa29fffddb89bd4780f3fe2026b08975612db89a8da1c1fb33614
MD5 7c357010dcefca37bd556b32f1d5627d
BLAKE2b-256 44e81c1448aa677166e359dd5eb75045b16ed92b1d6def0f83462e0143640884

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for scipy-1.8.0rc1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3fdcad56955b81032a474d0faf64181a855aeb8f1b5e2a252f6c6f77d72615b8
MD5 8a4787410da28d63b8edacfe19840e2e
BLAKE2b-256 7880c44951a9f9f7de42f3a2f77a6e3765a4656024bb9284e50613e44689e6be

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp38-cp38-macosx_12_0_universal2.whl.

File metadata

  • Download URL: scipy-1.8.0rc1-cp38-cp38-macosx_12_0_universal2.whl
  • Upload date:
  • Size: 118.4 MB
  • Tags: CPython 3.8, macOS 12.0+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.8.0rc1-cp38-cp38-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 fa86df590cbd1cdca50813e7424a7b77ad70dd8751e2b7b697f575c7a4e2477b
MD5 8afedc070fd54029904b2be9ce46391e
BLAKE2b-256 c3518213b145396636bb7a10afaae26cf5dffbbc8e1c6e3106d2320e3cbf407f

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

  • Download URL: scipy-1.8.0rc1-cp38-cp38-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 91.0 MB
  • Tags: CPython 3.8, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.8.0rc1-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 d43ca81ee822eddd7f38f7b0de4bceed9edbf932c7eaed09e604a823e54ce2a9
MD5 194bebe84e3985d6e33a28a3ba8a399b
BLAKE2b-256 67af96b303b04204c6909f431e9ded1845adf84b85431c594e4b3ab8a5f478fe

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: scipy-1.8.0rc1-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 91.6 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.8.0rc1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1b608269f8b502d32b57f6e4cc6ba5f84dee046cb024220eb16ab4a7d6e9bc6f
MD5 0f4008203d633bdca91d9d1fb7693cde
BLAKE2b-256 19362b60a260023d38fdaaee95ed86d68c4f99be1808efe58cba96eabc91e791

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.8.0rc1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scipy-1.8.0rc1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 97.9 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.4

File hashes

Hashes for scipy-1.8.0rc1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 efb7dbead70670ded7d3e3cbd73aaf29999b437c7aaf3158605fd6972483f737
MD5 d329fcc15040e4d12d887e700e619fc0
BLAKE2b-256 9660898929ae524049df269f308f575b9ea91b8dcd9bafcfc5d1b2f012272e1a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page