Skip to main content

SciPy: Scientific Library for Python

Project description

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and engineering. The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.9.0.tar.gz (42.0 MB view details)

Uploaded Source

Built Distributions

scipy-1.9.0-cp310-cp310-win_amd64.whl (38.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

scipy-1.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (43.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scipy-1.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (40.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scipy-1.9.0-cp310-cp310-macosx_12_0_universal2.macosx_10_9_x86_64.whl (58.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64 macOS 12.0+ universal2 (ARM64, x86-64)

scipy-1.9.0-cp310-cp310-macosx_12_0_arm64.whl (29.9 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scipy-1.9.0-cp310-cp310-macosx_10_9_x86_64.whl (36.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scipy-1.9.0-cp39-cp39-win_amd64.whl (38.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

scipy-1.9.0-cp39-cp39-win32.whl (34.6 MB view details)

Uploaded CPython 3.9 Windows x86

scipy-1.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (43.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scipy-1.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (40.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scipy-1.9.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (38.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

scipy-1.9.0-cp39-cp39-macosx_12_0_universal2.macosx_10_9_x86_64.whl (58.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64 macOS 12.0+ universal2 (ARM64, x86-64)

scipy-1.9.0-cp39-cp39-macosx_12_0_arm64.whl (29.9 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scipy-1.9.0-cp39-cp39-macosx_10_9_x86_64.whl (36.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

scipy-1.9.0-cp38-cp38-win_amd64.whl (38.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

scipy-1.9.0-cp38-cp38-win32.whl (34.5 MB view details)

Uploaded CPython 3.8 Windows x86

scipy-1.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (43.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

scipy-1.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (40.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

scipy-1.9.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (37.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

scipy-1.9.0-cp38-cp38-macosx_12_0_universal2.macosx_10_9_x86_64.whl (58.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64 macOS 12.0+ universal2 (ARM64, x86-64)

scipy-1.9.0-cp38-cp38-macosx_12_0_arm64.whl (29.8 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

scipy-1.9.0-cp38-cp38-macosx_10_9_x86_64.whl (36.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file scipy-1.9.0.tar.gz.

File metadata

  • Download URL: scipy-1.9.0.tar.gz
  • Upload date:
  • Size: 42.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.0.tar.gz
Algorithm Hash digest
SHA256 c0dfd7d2429452e7e94904c6a3af63cbaa3cf51b348bd9d35b42db7e9ad42791
MD5 1f2e527930ddfa15a622b146dae42144
BLAKE2b-256 a8e34ec401f609d34162b7023a09165da491630879e4cfa2336667fe2102cd06

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: scipy-1.9.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 38.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 10417935486b320d98536d732a58362e3d37e84add98c251e070c59a6bfe0863
MD5 11ef7d6e0a51e47a969be8f306c9c1c1
BLAKE2b-256 c9c1bce793731b81ed650c9c466daea9cf37e38b6856da947bf2b5dd169df032

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 79dd7876614fc2869bf5d311ef33962d2066ea888bc66c80fd4fa80f8772e5a9
MD5 9c0fde5ec354facfc28847daaad57910
BLAKE2b-256 e7cc82a1ce76bb5b6177fdd5d0f98e2953436abcdfdaa4412d45b54e75821bad

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 45f0d6c0d6e55582d3b8f5c58ad4ca4259a02affb190f89f06c8cc02e21bba81
MD5 0db743378c745c4bda991c01a29aa0d2
BLAKE2b-256 359e34bc9f14134e7d1303b5f383a8449e3075e9e3b09745a2eff613dce97bb0

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0-cp310-cp310-macosx_12_0_universal2.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0-cp310-cp310-macosx_12_0_universal2.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e2004d2a3c397b26ca78e67c9d320153a1a9b71ae713ad33f4a3a3ab3d79cc65
MD5 1aa449f965c578cdc823e6f06af5fa21
BLAKE2b-256 69776dc01b64d2e026b9a83c91fedd6eeb8596d6cc80a0d4c5a41e4d2781c5f9

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 8f2232c9d9119ec356240255a715a289b3a33be828c3e4abac11fd052ce15b1e
MD5 38fb4789dc46ad79dbb8c737feeb2d5c
BLAKE2b-256 fef12204b5daab105b9b9ca63b56ceeb4d497db9e7913162b0ee46c13caf2fc6

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0424d1bbbfa51d5ddaa16d067fd593863c9f2fb7c6840c32f8a08a8832f8e7a4
MD5 dbde1f41df031baa7ca49b4104df82f0
BLAKE2b-256 7eab2fbc7e004d64ef509184f81ba81637470977d54d157d1a289b04d1e28ec0

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.9.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 38.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bd490f77f35800d5620f4d9af669e372d9a88db1f76ef219e1609cc4ecdd1a24
MD5 e7b46c586b2bfaf20e39759c5cb58c17
BLAKE2b-256 57c34eedd933a71e2d167e903c4b8ee5c1d20e5e5a02a7d941d7c7f582e28a5d

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: scipy-1.9.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 34.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 7bad16b91918bf3288089a78a4157e04892ea6475fb7a1d9bcdf32c30c8a3dba
MD5 9266af96805327434546587285e2371b
BLAKE2b-256 64ba8d00ae543ee0e585d49d1b1c0067e77c21c8554af1196b13021ffa7918f8

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 693b3fe2e7736ce0dbc72b4d933798eb6ca8ce51b8b934e3f547cc06f48b2afb
MD5 70177dcb29a742a5aef75bd44d82298d
BLAKE2b-256 62a3b46b4ba2476d2ce713e400e7b22358f72c1d62bb3de8bd819b21808c07e0

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d3a326673ac5afa9ef5613a61626b9ec15c8f7222b4ecd1ce0fd8fcba7b83c59
MD5 beedfd47cbfc33cbc0580e1a2944c6ee
BLAKE2b-256 a089c1a6dc64ca50b9363038bafba4cab154a8cbdd8014326cedde9ff70e0375

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for scipy-1.9.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5d1b9cf3771fd921f7213b4b886ab2606010343bb36259b544a816044576d69e
MD5 a17740a62b23a4572c0be1cd464a806d
BLAKE2b-256 d623fc313779b6665b92ad982886b50ac10e82c2a93e69d93633f347f953381d

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0-cp39-cp39-macosx_12_0_universal2.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0-cp39-cp39-macosx_12_0_universal2.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e2ac088ea4aa61115b96b47f5f3d94b3fa29554340b6629cd2bfe6b0521ee33b
MD5 4c78a9c7667abca87dfd8a1d9ee28053
BLAKE2b-256 59afd0bb8c3f5024d858d1a36c5b8dfd2826fedcf9935428bcd48207c8328422

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 f7c3c578ff556333f3890c2df6c056955d53537bb176698359088108af73a58f
MD5 c15144c2e996dbabd7438de51eeb3ab7
BLAKE2b-256 37c6eeecc4c9699605ed4bd00cce6c7cf945f5eb7aa3b3ae9f8f6aeadbb0a59b

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 01c2015e132774feefe059d5354055fec6b751d7a7d70ad2cf5ce314e7426e2a
MD5 6c0ab468d03b7c7bfc9625fa4d1607b5
BLAKE2b-256 dac77698b59f464cf94b45b61cbc7cf58852d032a9f28e1b5e65650a9c7378e5

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scipy-1.9.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 38.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fc58c3fcb8a724b703ffbc126afdca5a8353d4d5945d5c92db85617e165299e7
MD5 a4eae3645015dea6e893345d247a61cb
BLAKE2b-256 49ffadcafbc8d9b14cb06999d876c10eee20636714cbdb93e9f30f68dee5d8ee

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: scipy-1.9.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 34.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 12005d30894e4fe7b247f7233ba0801a341f887b62e2eb99034dd6f2a8a33ad6
MD5 2d151e09ee0735b1bba9c456c416db81
BLAKE2b-256 79a9f216001314cde8e40377b15457ad35bb681d0c6eb8944806a30fc74a386f

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 73b704c5eea9be811919cae4caacf3180dd9212d9aed08477c1d2ba14900a9de
MD5 ea5a55a73cd989ccf4af97987668e30b
BLAKE2b-256 f738f5fad7b9a50a26a6a709549f815db7026a97d1a5652e548d5bbe587bb954

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bb687d245b6963673c639f318eea7e875d1ba147a67925586abed3d6f39bb7d8
MD5 75a971d36e01149d327c10f6be3b88d0
BLAKE2b-256 6da57a399975d4a7daff98dcc8afedc0a404be877a986c39f1923ee61a33cefd

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for scipy-1.9.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 16207622570af10f9e6a2cdc7da7a9660678852477adbcd056b6d1057a036fef
MD5 d3f0dbc236c0c46cd5b797b425ed338f
BLAKE2b-256 a6a92a18838dbfa15d7dda2eb5893dadbd79303b8f104169095a7085cb2d7fbd

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0-cp38-cp38-macosx_12_0_universal2.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0-cp38-cp38-macosx_12_0_universal2.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 97a1f1e51ea30782d7baa8d0c52f72c3f9f05cb609cf1b990664231c5102bccd
MD5 aeb01372b6854204ce9ecb814895219b
BLAKE2b-256 6a64a2e07535e6690825abb7369c15b55e91bad27aa59c24a99bec619af9b2b0

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 8d541db2d441ef87afb60c4a2addb00c3af281633602a4967e733ef4b7050504
MD5 305cddb9b1f3a7cc99e69d4fa9b49c3b
BLAKE2b-256 0e7aff000348e5b7a55c811b11b6edaeb0900b99a64b221d12d0510879f9dc22

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 adb6c438c6ef550e2bb83968e772b9690cb421f2c6073f9c2cb6af15ee538bc9
MD5 711ad51f72963d69fc0cccf6003361a6
BLAKE2b-256 718ee979c815df7348942c0e5b47c958e1030c66c9f396ed9bf27d1f85b90cd3

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page