Skip to main content

SciPy: Scientific Library for Python

Project description

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and engineering. The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.9.0rc2.tar.gz (42.0 MB view details)

Uploaded Source

Built Distributions

scipy-1.9.0rc2-cp310-cp310-win_amd64.whl (38.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

scipy-1.9.0rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (43.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scipy-1.9.0rc2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (40.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scipy-1.9.0rc2-cp310-cp310-macosx_12_0_universal2.macosx_10_9_x86_64.whl (58.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64 macOS 12.0+ universal2 (ARM64, x86-64)

scipy-1.9.0rc2-cp310-cp310-macosx_12_0_arm64.whl (29.9 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scipy-1.9.0rc2-cp310-cp310-macosx_10_9_x86_64.whl (36.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scipy-1.9.0rc2-cp39-cp39-win_amd64.whl (38.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

scipy-1.9.0rc2-cp39-cp39-win32.whl (34.5 MB view details)

Uploaded CPython 3.9 Windows x86

scipy-1.9.0rc2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (43.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scipy-1.9.0rc2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (40.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scipy-1.9.0rc2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (38.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

scipy-1.9.0rc2-cp39-cp39-macosx_12_0_universal2.macosx_10_9_x86_64.whl (58.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64 macOS 12.0+ universal2 (ARM64, x86-64)

scipy-1.9.0rc2-cp39-cp39-macosx_12_0_arm64.whl (29.9 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scipy-1.9.0rc2-cp39-cp39-macosx_10_9_x86_64.whl (36.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

scipy-1.9.0rc2-cp38-cp38-win_amd64.whl (38.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

scipy-1.9.0rc2-cp38-cp38-win32.whl (34.5 MB view details)

Uploaded CPython 3.8 Windows x86

scipy-1.9.0rc2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (43.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

scipy-1.9.0rc2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (40.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

scipy-1.9.0rc2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (37.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

scipy-1.9.0rc2-cp38-cp38-macosx_12_0_universal2.macosx_10_9_x86_64.whl (58.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64 macOS 12.0+ universal2 (ARM64, x86-64)

scipy-1.9.0rc2-cp38-cp38-macosx_12_0_arm64.whl (29.8 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

scipy-1.9.0rc2-cp38-cp38-macosx_10_9_x86_64.whl (36.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file scipy-1.9.0rc2.tar.gz.

File metadata

  • Download URL: scipy-1.9.0rc2.tar.gz
  • Upload date:
  • Size: 42.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.0rc2.tar.gz
Algorithm Hash digest
SHA256 83101d8bcac69c4201ff1aed52f9f41897fb0ba66e54422d2808df507126e626
MD5 fed06fd35282e493d02585359e2e5541
BLAKE2b-256 5a8727f9ee75c32138d6eaabff2b91744c97a3fdbbbdd78948372dac93e0079f

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0rc2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6d5bc5bc9c79a0ec9b55b5998f58442fd1d284cb4b527d684ce9e386926be628
MD5 201376bae9721999e3566b6ea7391dfc
BLAKE2b-256 2936b2368068f24ff7ff1961efc3f635e74aa8ab4e301cf64d039f0a96a10f4b

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c45ac765fdb82ada75d7079db15d315320f34bceef11aeaefe0a7c7e03b4017a
MD5 4dda696f929adbd671c195a9310ae002
BLAKE2b-256 2b7ad2253b56cbfb04e62e2e6ab3a787eb9d794f2575c52ad58c9d8692c9afab

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0rc2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bfc6dae17c36b5ddef171ff9f81fd2185aa05bdbc92f5894ba910c6bb257acdc
MD5 04034163e39af15f02e0fae30560e3bc
BLAKE2b-256 90341925de96f5061b2c5be3807f6ac07e5039a826016e94d2c5ae66c24f7eff

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0rc2-cp310-cp310-macosx_12_0_universal2.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc2-cp310-cp310-macosx_12_0_universal2.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c5c2d263ab8bd98ec309cd3092ee50719864d2babf40c6e47c913e8ea25c41d8
MD5 9bb0b0c609dffd1f0baa7bde690d7008
BLAKE2b-256 88aa189ae4efd010b273f72e9c7ba0e654b81668a8537aa18e7d1d5f2e31f438

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0rc2-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc2-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 91eee6c8fb79bfcadb9db46cfb558f6bd5dec9f1d1b289dec1ba4c901895d4ab
MD5 e9bedac372c3a5dbc2b455d379177127
BLAKE2b-256 8c05817d4140e5706ae6da481bfb72f5f76fbb50dbc83109af5044906f635d78

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0rc2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a80bd6a872b477d1099dda70732c2b1a28d5d302eeae8b3ca6df394f76395a84
MD5 27efe2af07a8a0e336532bd94370373d
BLAKE2b-256 b0b349e4f64836c8ab103465e7de0ff41a4e543e64e8a0fd282ae1fe0f4c3c15

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0rc2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.9.0rc2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 38.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.0rc2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 19685d8077de30c16456c669d4cb9767119d19d44760199e680ea707e9fa6d7d
MD5 f0dd35790ac301d5a7c6996d9f27abf1
BLAKE2b-256 f030f7b96f74f97aea2e6a2ba031f476a15b231cccf940cfc93334bc7497b41d

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0rc2-cp39-cp39-win32.whl.

File metadata

  • Download URL: scipy-1.9.0rc2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 34.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.0rc2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 5144e3d494932cc1438e06c75e2bd021ec27333fcad69acc020ad27aba07f112
MD5 1fc0c1045c56057163cc4fcc5067dede
BLAKE2b-256 106571ec44ed4ad1f190b63ec98a02b67cb5c7272bcb124d89ea455a3bc389c4

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0rc2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ab61f0aaee27e3b17d6f4897388d2ce8d3e3f1e45ad1280eb5b95900c951062d
MD5 47f068d9efe33d9ce040db5ac9d55dcc
BLAKE2b-256 47d7384bc2685bb2ff1cb7e8f34ac3c525da6e4563337a9189afdb3ff36ae4d3

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0rc2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c48725151d6553f87020e2f9577347c64e11345334565252caab3b840721c63c
MD5 93fae30095fbe4a7399bf4e92edd35b8
BLAKE2b-256 b166a38fe6f47bb1765ec862531c1b26c5a6d7b2fb2b09baf112b244cf29c167

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0rc2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5f859d583268b5556bf2cbfb3e008ef9c237a6e8af31feb59eb0273d7833cc71
MD5 599d90440e19b13fa70237f611b5694b
BLAKE2b-256 a6c59a0d62dd99a3afee0d227cb884dbea50aefa733e01c8a298547117529db9

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0rc2-cp39-cp39-macosx_12_0_universal2.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc2-cp39-cp39-macosx_12_0_universal2.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aea25d9fd356bb818b9f56f22da62424a2dbe5f3ef096eeaba142de0f137dcb4
MD5 708810830c490bf0af80f993760b8ab9
BLAKE2b-256 860368ae82dd880b337015271821313391f7344ba2486244c886d3a85e5df523

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0rc2-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc2-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 0b7effc84f187a4aacdf498bfefef6e934682222ab3a2e7c8b63056a22bcb228
MD5 645953ce36557c6b0e24ebc14aa7ec1c
BLAKE2b-256 bc6463ea2bdd7a145d97db3e4475e6c87050208b65373566106749682d49d1bd

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0rc2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bfdbc832b62e0bf552bca7662486d484fe2ad3f3fefe4ca577b36b702e56ba17
MD5 e1c3867d9e7bac379653fe3839d830e8
BLAKE2b-256 74888f63847fb0dcd8116a32bcd7f5e2bff0d9736c5c996395db209957f4cdce

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0rc2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scipy-1.9.0rc2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 38.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.0rc2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c3a3e9c123c1b80be967c4f191988dfbcfe80b1467f07f1777efe48994459bae
MD5 8c1eaaf790ee8669bcc5fda611ba3e97
BLAKE2b-256 d6f63c4d70b863f486c5a27512edb0fe01fa0b697adaac96b1ee6917c9a696f8

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0rc2-cp38-cp38-win32.whl.

File metadata

  • Download URL: scipy-1.9.0rc2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 34.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.0rc2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 c301266038529475eb351e01f209e43ab2d1dc2745b6c7d0c0de7b4e46814661
MD5 285d3024080bd176d92f065d9f4b6ba7
BLAKE2b-256 8309c4f26d17f8b0127fd9d75ea43424254d339c974e78bd6cb91e6648c8142e

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0rc2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fba0340b9730e12ce9943fdd0702473f889d79755bec8b3f7baed49d38dad89d
MD5 b34e02c0a1bacebde8b0f6d0f41b56e2
BLAKE2b-256 ccd1d8dc7a3e595a31d0cabf9c887933fe50d4b673e54b26e2bc9e9b130e9802

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0rc2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fff9ba39ab63f0b00953d726ba349113c6e542e89676d2661d2c95eadfaeb6a9
MD5 90cf11b2c49a0cb9670d63da80c96c4a
BLAKE2b-256 805e9536821d87df9391ba7cddf388d6c388f1ea798407c55c0048191b239ffc

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0rc2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c8f5af55f1042b7992a21f4bd2d3760a01e745f07367e23bfdab8e25c32eb9cb
MD5 bccd494cce287ccc039e8cbb0ae368eb
BLAKE2b-256 d4b0b75be46a659e42e0f4aa876b3e89858b64d173e6a627aa4a4d2b2d912d8b

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0rc2-cp38-cp38-macosx_12_0_universal2.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc2-cp38-cp38-macosx_12_0_universal2.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2e4afcb7db8d24b1467e3e3bd8abca8b3f4bd045523b82b0aa9b5d2e72462b3d
MD5 69ecced5c42893ec1b6228844fc28077
BLAKE2b-256 c9b5bd15ff283d70c8088d23e003527aff6fdd9df44134c04865abc434c9ab37

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0rc2-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc2-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 6c9e6242b5e7cf9440b31b69e0bdcaa53f97b5905f1172d72c41a179d02d0acb
MD5 3f23428a07e144ddb8f2aa713f632990
BLAKE2b-256 d49db5f4dbcef73fee46a764f4ae4acebc8d32562095b221bb1dbc05a37f3ea5

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.0rc2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.0rc2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f4c264e4efcff7bdd3c4041a817f8ae96a2c705d03c2418f6e82c2b2f23dd075
MD5 33536bd807bb03f3283b524bc66b5e13
BLAKE2b-256 2c36d69bb8c7780c435453a062721ba4ea2c503cbea151eb2fcca41ba50da711

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page