Skip to main content

Fundamental algorithms for scientific computing in Python

Project description

https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A https://img.shields.io/pypi/dm/scipy.svg?label=Pypi%20downloads https://img.shields.io/conda/dn/conda-forge/scipy.svg?label=Conda%20downloads https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg https://img.shields.io/badge/DOI-10.1038%2Fs41592--019--0686--2-blue

SciPy (pronounced “Sigh Pie”) is an open-source software for mathematics, science, and engineering. It includes modules for statistics, optimization, integration, linear algebra, Fourier transforms, signal and image processing, ODE solvers, and more.

SciPy is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines, such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

For the installation instructions, see our install guide.

Call for Contributions

We appreciate and welcome contributions. Small improvements or fixes are always appreciated; issues labeled as “good first issue” may be a good starting point. Have a look at our contributing guide.

Writing code isn’t the only way to contribute to SciPy. You can also:

  • review pull requests

  • triage issues

  • develop tutorials, presentations, and other educational materials

  • maintain and improve our website

  • develop graphic design for our brand assets and promotional materials

  • help with outreach and onboard new contributors

  • write grant proposals and help with other fundraising efforts

If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by leaving a comment on a relevant issue that is already open.

If you are new to contributing to open source, this guide helps explain why, what, and how to get involved.

Project details


Release history Release notifications | RSS feed

This version

1.9.2

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.9.2.tar.gz (42.1 MB view details)

Uploaded Source

Built Distributions

scipy-1.9.2-cp311-cp311-win_amd64.whl (39.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

scipy-1.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (33.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scipy-1.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (29.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scipy-1.9.2-cp311-cp311-macosx_12_0_arm64.whl (28.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scipy-1.9.2-cp311-cp311-macosx_10_9_x86_64.whl (34.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scipy-1.9.2-cp310-cp310-win_amd64.whl (40.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

scipy-1.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (33.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scipy-1.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scipy-1.9.2-cp310-cp310-macosx_12_0_arm64.whl (28.5 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scipy-1.9.2-cp310-cp310-macosx_10_9_x86_64.whl (34.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scipy-1.9.2-cp39-cp39-win_amd64.whl (40.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

scipy-1.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (33.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scipy-1.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scipy-1.9.2-cp39-cp39-macosx_12_0_arm64.whl (28.6 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scipy-1.9.2-cp39-cp39-macosx_10_9_x86_64.whl (34.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

scipy-1.9.2-cp38-cp38-win_amd64.whl (39.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

scipy-1.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (33.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

scipy-1.9.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

scipy-1.9.2-cp38-cp38-macosx_12_0_arm64.whl (28.5 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

scipy-1.9.2-cp38-cp38-macosx_10_9_x86_64.whl (34.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file scipy-1.9.2.tar.gz.

File metadata

  • Download URL: scipy-1.9.2.tar.gz
  • Upload date:
  • Size: 42.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.2.tar.gz
Algorithm Hash digest
SHA256 99e7720caefb8bca6ebf05c7d96078ed202881f61e0c68bd9e0f3e8097d6f794
MD5 ee6db269d03b2d47d04e876d38515d0d
BLAKE2b-256 170768df07679ec4a4a24bff00147a14908aa73e9e8912d142886e8d0e1e3d64

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: scipy-1.9.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 39.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 92c5e627a0635ca02e6494bbbdb74f98d93ac8730416209d61de3b70c8a821be
MD5 0ae5a663d614704a6562852f3522f301
BLAKE2b-256 3c861fa36885e5e69bba07e284429a2b4eed020426792b5ea9edcd0feeee73d7

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0e9c83dccac06f3b9aa02df69577f239758d5d0d0c069673fb0b47ecb971983d
MD5 2ff1d757d2c90a265536ede0fd81e16b
BLAKE2b-256 8adcff04835bbb6758e5905f1966102f20d31a81398e7ba9adb39a346e3b3185

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5994a8232cc6510a8e85899661df2d11198bf362f0ffe6fbd5c0aca17ab46ce3
MD5 91c3b785f521f1d28f6a80269f606b90
BLAKE2b-256 7e26675a3678c6766c19aaaa95f0e0859a3f04696f28caf6da3cc3362e5c0528

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.2-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.9.2-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 885b7ac56d7460544b2ef89ab9feafa30f4264c9825d975ef690608d07e6cc55
MD5 390b08eaf51c5eb9ba1133528b7c533b
BLAKE2b-256 708d8826165c64fa6b8ccb979821035294d49bfda08f675da2bdefdcb76b6166

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bbed414fc25d64bd6d1613dc0286fbf91902219b8be63ad254525162235b67e9
MD5 231bd8e66f98da0ca230eee0b7073272
BLAKE2b-256 8e7c8b219dd6919652615e146da0fadfa639a2db91681d1699aed1c44796edbd

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: scipy-1.9.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 40.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 22380e076a162e81b659d53d75b02e9c75ad14ea2d53d9c645a12543414e2150
MD5 b79141c4dc1334a400c1ebc3bea7079f
BLAKE2b-256 3c933454c803ed7ca8d28d8fb6a2a9ed8ec7f0ce01389506def0155b661cbba8

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa270cc6080c987929335c4cb94e8054fee9a6058cecff22276fa5dbab9856fc
MD5 46e873c730c8c8717481c32c0a566efc
BLAKE2b-256 e9053ce7e813ee0666fc10ede875da17d8d5671b774491dcfb4be176c3a880e2

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a72297eb9702576bd8f626bb488fd32bb35349d3120fc4a5e733db137f06c9a6
MD5 af710e46dd3368cb5fc0384a75bce3fa
BLAKE2b-256 cbd91e6260671c1dca0a940dee00259ea28ebc5abccf4ee99519824b5e34d32b

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.2-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.9.2-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 17be1a7c68ec4c49d8cd4eb1655d55d14a54ab63012296bdd5921c92dc485acd
MD5 ec7d2fcb73448c9c2574e191c9812658
BLAKE2b-256 3f156a97224704278fbb4024083c2131c3c48f23dcd41e5d41c899b03ad0109d

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ee4ceed204f269da19f67f0115a85d3a2cd8547185037ad99a4025f9c61d02e9
MD5 92c596860d45c8a67794dd8658ae7656
BLAKE2b-256 9546a99ff8cd7674e0513c6a600f21d4271690612ef97fbf5b9bcebcca63907c

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.9.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 40.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7b2608b3141c257d01ae772e23b3de9e04d27344e6b68a890883795229cb7191
MD5 0d5571f7b3c02b6ca2ad3d8e170e1b80
BLAKE2b-256 30e0ec4baf26aea5fcd859a7cb3b8ff826a0618bbd3fdc63452f87b70cc158dc

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8c8c29703202c39d699b0d6b164bde5501c212005f20abf46ae322b9307c8a41
MD5 72d7d4516bb3ed52364974bb86e11282
BLAKE2b-256 af8e552314ba91f257c2857d17f5a76dc21c63fe58a24634934cfecdd5eb56b2

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 61b95283529712101bfb7c87faf94cb86ed9e64de079509edfe107e5cfa55733
MD5 1aee8ad5332476b1d2cbae78ac21148c
BLAKE2b-256 dc7673679578e4ebdd240f740a1a49992921180b3f7d380f8f244ddbd010849d

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.2-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.9.2-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 82e8bfb352aa9dce9a0ffe81f4c369a2c87c85533519441686f59f21d8c09697
MD5 9da2fdfb65a515fa589161bbc60d448d
BLAKE2b-256 ec7bbf1cb24ba269d5911ba723a17e4c10f64c727798d74be0ac87c5fd9201ca

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1e3b23a82867018cd26255dc951789a7c567921622073e1113755866f1eae928
MD5 070537e01c7cd3a43a31a9136eaba64b
BLAKE2b-256 99b506f8428d0753103ce3731a3c3b7d2549276e620f20fbe822a4befb4fcc24

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scipy-1.9.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 39.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d6cb1f92ded3fc48f7dbe94d20d7b9887e13b874e79043907de541c841563b4c
MD5 1c0c3be58b7ab70ff522a5940ef31dc8
BLAKE2b-256 8d06a1e8d18f2538035e22cbf27297fa3ba998a396161847b21a4892b855fcc0

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4012dbe540732311b8f4388b7e1482eb43a7cc0435bbf2b9916b3d6c38fb8d01
MD5 0df27d09c4053bb04f1649e113ffbfcc
BLAKE2b-256 419fa6fe9d46df289bc1b58477bbf8a2d9a56354174d975a5a9d2781a5c7dccf

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.9.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 658fd31c6ad4eb9fa3fd460fcac779f70a6bc7480288a211b7658a25891cf01d
MD5 397bea516b10fc49169605b9637faf28
BLAKE2b-256 91103ceef5ab065ccfa3c0069e0b0cfd0421d8fa779735033f8472c813f87d6f

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.2-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.9.2-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 148cb6f53d9d10dafde848e9aeb1226bf2809d16dc3221b2fa568130b6f2e586
MD5 e7de622b50de640bf54b0efc858076ee
BLAKE2b-256 16023a98915e7ac64b594067d8f4ba2c80dc173dc525b779936004bd539f8eb5

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b6194da32e0ce9200b2eda4eb4edb89c5cb8b83d6deaf7c35f8ad3d5d7627d5c
MD5 a291616c0268f8d92c39c127b6559f9d
BLAKE2b-256 9dbecf6dac1d07192dfbb497138cf2f4ed9bc62eef405f31057ca72e5a927cfe

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page