Skip to main content

Fundamental algorithms for scientific computing in Python

Project description

https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A https://img.shields.io/pypi/dm/scipy.svg?label=Pypi%20downloads https://img.shields.io/conda/dn/conda-forge/scipy.svg?label=Conda%20downloads https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg https://img.shields.io/badge/DOI-10.1038%2Fs41592--019--0686--2-blue

SciPy (pronounced “Sigh Pie”) is an open-source software for mathematics, science, and engineering. It includes modules for statistics, optimization, integration, linear algebra, Fourier transforms, signal and image processing, ODE solvers, and more.

SciPy is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines, such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

For the installation instructions, see our install guide.

Call for Contributions

We appreciate and welcome contributions. Small improvements or fixes are always appreciated; issues labeled as “good first issue” may be a good starting point. Have a look at our contributing guide.

Writing code isn’t the only way to contribute to SciPy. You can also:

  • review pull requests

  • triage issues

  • develop tutorials, presentations, and other educational materials

  • maintain and improve our website

  • develop graphic design for our brand assets and promotional materials

  • help with outreach and onboard new contributors

  • write grant proposals and help with other fundraising efforts

If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by leaving a comment on a relevant issue that is already open.

If you are new to contributing to open source, this guide helps explain why, what, and how to get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.9.3.tar.gz (42.1 MB view details)

Uploaded Source

Built Distributions

scipy-1.9.3-cp311-cp311-win_amd64.whl (39.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

scipy-1.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (33.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scipy-1.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (29.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scipy-1.9.3-cp311-cp311-macosx_12_0_arm64.whl (28.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scipy-1.9.3-cp311-cp311-macosx_10_9_x86_64.whl (34.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scipy-1.9.3-cp310-cp310-win_amd64.whl (40.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

scipy-1.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (33.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scipy-1.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scipy-1.9.3-cp310-cp310-macosx_12_0_arm64.whl (28.5 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scipy-1.9.3-cp310-cp310-macosx_10_9_x86_64.whl (34.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scipy-1.9.3-cp39-cp39-win_amd64.whl (40.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

scipy-1.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (33.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scipy-1.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scipy-1.9.3-cp39-cp39-macosx_12_0_arm64.whl (28.6 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scipy-1.9.3-cp39-cp39-macosx_10_9_x86_64.whl (34.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

scipy-1.9.3-cp38-cp38-win_amd64.whl (39.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

scipy-1.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (33.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

scipy-1.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

scipy-1.9.3-cp38-cp38-macosx_12_0_arm64.whl (28.5 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

scipy-1.9.3-cp38-cp38-macosx_10_9_x86_64.whl (34.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file scipy-1.9.3.tar.gz.

File metadata

  • Download URL: scipy-1.9.3.tar.gz
  • Upload date:
  • Size: 42.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.3.tar.gz
Algorithm Hash digest
SHA256 fbc5c05c85c1a02be77b1ff591087c83bc44579c6d2bd9fb798bb64ea5e1a027
MD5 83b0d9eab2ce79b7fe5888f119adee64
BLAKE2b-256 0a2e44795c6398e24e45fa0bb61c3e98de1cfea567b1b51efd3751e2f7ff9720

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: scipy-1.9.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 39.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 06d2e1b4c491dc7d8eacea139a1b0b295f74e1a1a0f704c375028f8320d16e31
MD5 9058162aa8dcca8e9b1a422f5e294c69
BLAKE2b-256 42810a64d2204c3b261380ac96c6d61f018528108b62c0e21e6153a58cebf4f6

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 abaf921531b5aeaafced90157db505e10345e45038c39e5d9b6c7922d68085cb
MD5 fdadb35d0df93651217bbcbf13cef220
BLAKE2b-256 92f97ae2c1ae200212bc84b5a8369a10d644aa8b588140fe292d59db3b4a2545

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 83c06e62a390a9167da60bedd4575a14c1f58ca9dfde59830fc42e5197283dab
MD5 7d00417d6739916326b87eb12b2c9e6b
BLAKE2b-256 f9375cd44af74d7178a44452b17ea162bc93996d5555b4a978877d2efd56fe84

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.3-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.9.3-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 90453d2b93ea82a9f434e4e1cba043e779ff67b92f7a0e85d05d286a3625df3c
MD5 c68a377a9992a8594829b07311e65c25
BLAKE2b-256 c33ee40c52775a5d19abd43b1c245fbc5dee283a29acc45c830bc73bfad9468b

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b41bc822679ad1c9a5f023bc93f6d0543129ca0f37c1ce294dd9d386f0a21096
MD5 023319ead7cf77f224e7f63fbda1ca7f
BLAKE2b-256 df75c0254dc58d1f1b00f9d3dbda029743b71b815dd512461ed20d9b7f459e37

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: scipy-1.9.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 40.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 68239b6aa6f9c593da8be1509a05cb7f9efe98b80f43a5861cd24c7557e98523
MD5 fc60ba0d138e56ad3c35508baf7f753a
BLAKE2b-256 cf0e3f1685c1fcb5dfe35ec027a5fc7a29e8818c61b2cc7fa207b4fc7b959f52

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d01e1dd7b15bd2449c8bfc6b7cc67d630700ed655654f0dfcf121600bad205c9
MD5 769e96e287820316f3c0d914f771952a
BLAKE2b-256 590b8a9acfc5c36bbf6e18d02f3a08db5b83bebba510be2df3230f53852c74a4

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1a72d885fa44247f92743fc20732ae55564ff2a519e8302fb7e18717c5355a8b
MD5 a57d99b93aca3af45055da958cf38c08
BLAKE2b-256 ce28635391e72e24bd3f4a91e374f4a186a5e4ecc95f23d8a55c9b0d25777cf7

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.3-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.9.3-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 83b89e9586c62e787f5012e8475fbb12185bafb996a03257e9675cd73d3736dd
MD5 befec66a3e966689b06deaab36738d80
BLAKE2b-256 400e3ff193b6ba6a0a6f13f8d367e8976370232e769bd609c8c11d86e0353adf

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1884b66a54887e21addf9c16fb588720a8309a57b2e258ae1c7986d4444d3bc0
MD5 7cc7a68a35baa1410401cd17c0c1adef
BLAKE2b-256 fbba1733dbbc19f2aa07d100cfa220bcc83a3977bc5c9f0a5ad262dae1f3ab90

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.9.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 40.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5b88e6d91ad9d59478fafe92a7c757d00c59e3bdc3331be8ada76a4f8d683f58
MD5 cec9c7de03eccc40422a39f8e1b3017f
BLAKE2b-256 d0964f6eac3fea18f836a0e403539556b1684e6f3361fa39aa5d5797dedecd75

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c68db6b290cbd4049012990d7fe71a2abd9ffbe82c0056ebe0f01df8be5436b0
MD5 a54e3072d677d52aa39fb377a03bdc49
BLAKE2b-256 bbb7380c9e4cd71263f03d16f8a92c0e44c9bdef38777e1a7dde1f47ba996bac

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4db5b30849606a95dcf519763dd3ab6fe9bd91df49eba517359e450a7d80ce2e
MD5 33981e50b45e187da0e99e24fe15e174
BLAKE2b-256 b567c5451465ec94e654e6315cd5136961d267ae94a0f799b85d26eb9efe4c9f

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.3-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.9.3-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 da8245491d73ed0a994ed9c2e380fd058ce2fa8a18da204681f2fe1f57f98f95
MD5 e403b6cc44c898d8ef745d7c003059f5
BLAKE2b-256 c80fd9f8c50be8670b7ba6f002679e84cd18f46a23faf62c1590f4d1bbec0c8c

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d644a64e174c16cb4b2e41dfea6af722053e83d066da7343f333a54dae9bc31c
MD5 19511e5d844f3a87311711b9c60da0ad
BLAKE2b-256 59efd54d17c36b46a9b8f6e1d4bf039b7f7ad236504cfb13cf1872caec9cbeaa

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scipy-1.9.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 39.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.9.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2318bef588acc7a574f5bfdff9c172d0b1bf2c8143d9582e05f878e580a3781e
MD5 28218680198c3b11c3653a6f306574a2
BLAKE2b-256 4214d2500818b7bb7b862d70c1ae97e646a4795b068583c67720553764095024

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cff3a5295234037e39500d35316a4c5794739433528310e117b8a9a0c76d20fc
MD5 cee3bff759f89f9baec4b928bae92e48
BLAKE2b-256 56af6a2b90fe280e89466d84747054667f74b84a8304f75931a173090919991f

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0d54222d7a3ba6022fdf5773931b5d7c56efe41ede7f7128c7b1637700409108
MD5 3f1c5cef7792b4331d22ae6ab13eeacb
BLAKE2b-256 f49d882134b1e774a9227ab855c71a39612194e1106185595417ce92f0f1e78c

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.3-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.9.3-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 545c83ffb518094d8c9d83cce216c0c32f8c04aaf28b92cc8283eda0685162d5
MD5 5f5f6cf131cd8c4e84271186e1acf77c
BLAKE2b-256 448abae77e624391b27aeea2d33a02f2ce4a8019f1378ce92faf5780f1521f2e

See more details on using hashes here.

Provenance

File details

Details for the file scipy-1.9.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.9.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5a04cd7d0d3eff6ea4719371cbc44df31411862b9646db617c99718ff68d4840
MD5 85b89c5610f616f523794742a9e7228c
BLAKE2b-256 84864f38fa30c112c3590954420f85d95b8cd23811ecc5cfc4bfd4d988d4db44

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page