Skip to main content

Python library for single-cell adaptive immune receptor repertoire (AIRR) analysis

Project description

Scirpy: single-cell immune receptor analysis in Python

Tests Documentation PyPI bioconda airr Powered by NumFOCUS

Scirpy is a package to analyse T cell receptor (TCR) or B cell receptor (BCR) repertoires from single-cell RNA sequencing (scRNA-seq) data in Python. It seamlessly integrates with scanpy and mudata and provides various modules for data import, analysis and visualization.

Scirpy is part of the scverse project (website, governance) and is fiscally sponsored by NumFOCUS. Please consider making a tax-deductible donation to help the project pay for developer time, professional services, travel, workshops, and a variety of other needs.

Getting started

Please refer to the documentation. In particular, the

Installation

You need to have Python 3.9 or newer installed on your system. If you don't have Python installed, we recommend installing Mambaforge.

There are several alternative options to install scirpy:

  1. Install the latest release of scirpy from PyPI:

    pip install scirpy
    
  2. Get it from Bioconda:

    First setup conda channels as described here. Then install scirpy:

    conda install scirpy
    
  3. Install the latest development version:

    pip install git+https://github.com/scverse/scirpy.git@main
    
  4. Run it in a container using Docker or Podman:

    docker pull quay.io/biocontainers/scirpy:<tag>
    

where tag is one of these tags.

Release notes

See the changelog.

Support and Contact

We are happy to assist with problems when using scirpy.

  • If you need help with scirpy or have questions regarding single-cell immune-cell receptor analysis in general, please join us in the scverse discourse.
  • For bug report or feature requests, please use the issue tracker.

We try to respond within two working days, however fixing bugs or implementing new features can take substantially longer, depending on the availability of our developers.

Citation

If you use scirpy in your work, please cite the scirpy publication as follows:

Scirpy: A Scanpy extension for analyzing single-cell T-cell receptor sequencing data

Gregor Sturm, Tamas Szabo, Georgios Fotakis, Marlene Haider, Dietmar Rieder, Zlatko Trajanoski, Francesca Finotello

Bioinformatics 2020 Sep 15. doi: 10.1093/bioinformatics/btaa611.

You can cite the scverse publication as follows:

The scverse project provides a computational ecosystem for single-cell omics data analysis

Isaac Virshup, Danila Bredikhin, Lukas Heumos, Giovanni Palla, Gregor Sturm, Adam Gayoso, Ilia Kats, Mikaela Koutrouli, Scverse Community, Bonnie Berger, Dana Pe’er, Aviv Regev, Sarah A. Teichmann, Francesca Finotello, F. Alexander Wolf, Nir Yosef, Oliver Stegle & Fabian J. Theis

Nat Biotechnol. 2023 Apr 10. doi: 10.1038/s41587-023-01733-8.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scirpy-0.17.2.tar.gz (32.8 MB view details)

Uploaded Source

Built Distribution

scirpy-0.17.2-py3-none-any.whl (3.1 MB view details)

Uploaded Python 3

File details

Details for the file scirpy-0.17.2.tar.gz.

File metadata

  • Download URL: scirpy-0.17.2.tar.gz
  • Upload date:
  • Size: 32.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for scirpy-0.17.2.tar.gz
Algorithm Hash digest
SHA256 37dc159bb6d4f033039dde9073a69104f8445be4459cec4532fdcbf84eef13b3
MD5 c7a3e46f2bdd6e879492c89f6f816431
BLAKE2b-256 179abbe0b2ac22daca9ca0db3db6eaf5b30cd95ebb39ea0054aa1fd494c81c45

See more details on using hashes here.

Provenance

File details

Details for the file scirpy-0.17.2-py3-none-any.whl.

File metadata

  • Download URL: scirpy-0.17.2-py3-none-any.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for scirpy-0.17.2-py3-none-any.whl
Algorithm Hash digest
SHA256 162a091b7db55c79d771cb598d349243954525e281aaf264c1f0892732abadfb
MD5 7c91f19522e92347a957dd47fd2901c4
BLAKE2b-256 97043d181930b177b963e95dade9f63534d6ec0a605efecfb4829b6208986378

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page