Helpers for building parameter grids for scikit-learn grid search
Project description
``searchgrid`` documentation
============================
Helps building parameter grids for :ref:`scikit-learn grid search
<scikit-learn:grid_search>`.
|version| |licence| |py-versions|
|issues| |build| |docs| |coverage|
Specifying a parameter grid for
:class:`~sklearn.model_selection.GridSearchCV`
in Scikit-Learn can be annoying, particularly when:
- you change your code to wrap some estimator in, say, a ``Pipeline``
and then need to prefix all the parameters in the grid using lots of
``__``\ s
- you are searching over multiple grids (i.e. your ``param_grid`` is a
list) and you want to make a change to all of those grids
``searchgrid`` allows you to define (and change) the grid together with the
esimator, reducing effort and sometimes code.
It stores the parameters you want to search on each particular estimator
object. This makes it much more straightforward to
specify complex parameter grids, and means you don't need to update your
grid when you change the structure of your composite estimator.
It provides two main functions:
- :func:`searchgrid.set_grid` is used to specify the parameter values to be
searched for an estimator or GP kernel.
- :func:`searchgrid.make_grid_search` is used to construct the
``GridSearchCV`` object using the parameter space the estimator is annotated
with.
Quick Start
...........
If scikit-learn is installed, then, in a terminal::
pip install searchgrid
and use in Python::
from search_grid import set_grid, make_grid_search
estimator = set_grid(MyEstimator(), param=[value1, value2, value3])
search = make_grid_search(estimator, cv=..., scoring=...)
search.fit(X, y)
Or search for the best among multiple distinct estimators/pipelines::
search = make_grid_search([estimator1, estimator2], cv=..., scoring=...)
search.fit(X, y)
Motivating examples
...................
Let's look over some of the messy change cases. We'll get some imports out of
the way.::
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.feature_selection import SelectKBest
>>> from sklearn.decomposition import PCA
>>> from searchgrid import set_grid, make_grid_search
>>> from sklearn.model_selection import GridSearchCV
Wrapping an estimator in a pipeline.
You had code which searched over parameters for a classifier.
Now you want to search for that classifier in a Pipeline.
With plain old scikit-learn, you have to insert ``__``\ s and change::
>>> gs = GridSearchCV(LogisticRegression(), {'C': [.1, 1, 10]})
to::
>>> gs = GridSearchCV(Pipeline([('reduce', SelectKBest()),
... ('clf', LogisticRegression())]),
... {'clf__C': [.1, 1, 10]})
With ``searchgrid`` we only have to wrap our classifier in a Pipeline, and
do not have to change the parameter grid, adding the ``clf__`` prefix. From::
>>> lr = set_grid(LogisticRegression(), C=[.1, 1, 10])
>>> gs = make_grid_search(lr)
to::
>>> lr = set_grid(LogisticRegression(), C=[.1, 1, 10])
>>> gs = make_grid_search(Pipeline([('reduce', SelectKBest()),
... ('clf', lr)]))
You want to change the estimator being searched in a pipeline.
With scikit-learn, to use PCA instead of SelectKBest, you change::
>>> pipe = Pipeline([('reduce', SelectKBest()),
... ('clf', LogisticRegression())])
>>> gs = GridSearchCV(pipe,
... {'reduce__k': [5, 10, 20],
... 'clf__C': [.1, 1, 10]})
to::
>>> pipe = Pipeline([('reduce', PCA()),
... ('clf', LogisticRegression())])
>>> gs = GridSearchCV(pipe,
... {'reduce__n_components': [5, 10, 20],
... 'clf__C': [.1, 1, 10]})
Note that ``reduce__k`` became ``reduce__n_components``.
With ``searchgrid`` it's easier because you change the estimator and the
parameters in the same place::
>>> reduce = set_grid(SelectKBest(), k=[5, 10, 20])
>>> lr = set_grid(LogisticRegression(), C=[.1, 1, 10])
>>> pipe = Pipeline([('reduce', reduce),
... ('clf', lr)])
>>> gs = make_grid_search(pipe)
becomes::
>>> reduce = set_grid(PCA(), n_components=[5, 10, 20])
>>> lr = set_grid(LogisticRegression(), C=[.1, 1, 10])
>>> pipe = Pipeline([('reduce', reduce),
... ('clf', lr)])
>>> gs = make_grid_search(pipe)
Searching over multiple grids.
You want to take the code from the previous example, but instead search
over feature selection and PCA reduction in the same search.
Without ``searchgrid``::
>>> pipe = Pipeline([('reduce', None),
... ('clf', LogisticRegression())])
>>> gs = GridSearchCV(pipe, [{'reduce': [SelectKBest()],
... 'reduce__k': [5, 10, 20],
... 'clf__C': [.1, 1, 10]},
... {'reduce': [PCA()],
... 'reduce__n_components': [5, 10, 20],
... 'clf__C': [.1, 1, 10]}])
With ``searchgrid``::
>>> kbest = set_grid(SelectKBest(), k=[5, 10, 20])
>>> pca = set_grid(PCA(), n_components=[5, 10, 20])
>>> lr = set_grid(LogisticRegression(), C=[.1, 1, 10])
>>> pipe = set_grid(Pipeline([('reduce', None),
... ('clf', lr)]),
... reduce=[kbest, pca])
>>> gs = make_grid_search(pipe)
.. |py-versions| image:: https://img.shields.io/pypi/pyversions/searchgrid.svg
:alt: Python versions supported
.. |version| image:: https://badge.fury.io/py/searchgrid.svg
:alt: Latest version on PyPi
:target: https://badge.fury.io/py/searchgrid
.. |build| image:: https://travis-ci.org/jnothman/searchgrid.svg?branch=master
:alt: Travis CI build status
:scale: 100%
:target: https://travis-ci.org/jnothman/searchgrid
.. |issues| image:: https://img.shields.io/github/issues/jnothman/searchgrid.svg
:alt: Issue tracker
:target: https://github.com/jnothman/searchgrid
.. |coverage| image:: https://coveralls.io/repos/github/jnothman/searchgrid/badge.svg
:alt: Test coverage
:target: https://coveralls.io/github/jnothman/searchgrid
.. |docs| image:: https://readthedocs.org/projects/searchgrid/badge/?version=latest
:alt: Documentation Status
:scale: 100%
:target: https://searchgrid.readthedocs.io/en/latest/?badge=latest
.. |licence| image:: https://img.shields.io/badge/Licence-BSD-blue.svg
:target: https://opensource.org/licenses/BSD-3-Clause
============================
Helps building parameter grids for :ref:`scikit-learn grid search
<scikit-learn:grid_search>`.
|version| |licence| |py-versions|
|issues| |build| |docs| |coverage|
Specifying a parameter grid for
:class:`~sklearn.model_selection.GridSearchCV`
in Scikit-Learn can be annoying, particularly when:
- you change your code to wrap some estimator in, say, a ``Pipeline``
and then need to prefix all the parameters in the grid using lots of
``__``\ s
- you are searching over multiple grids (i.e. your ``param_grid`` is a
list) and you want to make a change to all of those grids
``searchgrid`` allows you to define (and change) the grid together with the
esimator, reducing effort and sometimes code.
It stores the parameters you want to search on each particular estimator
object. This makes it much more straightforward to
specify complex parameter grids, and means you don't need to update your
grid when you change the structure of your composite estimator.
It provides two main functions:
- :func:`searchgrid.set_grid` is used to specify the parameter values to be
searched for an estimator or GP kernel.
- :func:`searchgrid.make_grid_search` is used to construct the
``GridSearchCV`` object using the parameter space the estimator is annotated
with.
Quick Start
...........
If scikit-learn is installed, then, in a terminal::
pip install searchgrid
and use in Python::
from search_grid import set_grid, make_grid_search
estimator = set_grid(MyEstimator(), param=[value1, value2, value3])
search = make_grid_search(estimator, cv=..., scoring=...)
search.fit(X, y)
Or search for the best among multiple distinct estimators/pipelines::
search = make_grid_search([estimator1, estimator2], cv=..., scoring=...)
search.fit(X, y)
Motivating examples
...................
Let's look over some of the messy change cases. We'll get some imports out of
the way.::
>>> from sklearn.pipeline import Pipeline
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.feature_selection import SelectKBest
>>> from sklearn.decomposition import PCA
>>> from searchgrid import set_grid, make_grid_search
>>> from sklearn.model_selection import GridSearchCV
Wrapping an estimator in a pipeline.
You had code which searched over parameters for a classifier.
Now you want to search for that classifier in a Pipeline.
With plain old scikit-learn, you have to insert ``__``\ s and change::
>>> gs = GridSearchCV(LogisticRegression(), {'C': [.1, 1, 10]})
to::
>>> gs = GridSearchCV(Pipeline([('reduce', SelectKBest()),
... ('clf', LogisticRegression())]),
... {'clf__C': [.1, 1, 10]})
With ``searchgrid`` we only have to wrap our classifier in a Pipeline, and
do not have to change the parameter grid, adding the ``clf__`` prefix. From::
>>> lr = set_grid(LogisticRegression(), C=[.1, 1, 10])
>>> gs = make_grid_search(lr)
to::
>>> lr = set_grid(LogisticRegression(), C=[.1, 1, 10])
>>> gs = make_grid_search(Pipeline([('reduce', SelectKBest()),
... ('clf', lr)]))
You want to change the estimator being searched in a pipeline.
With scikit-learn, to use PCA instead of SelectKBest, you change::
>>> pipe = Pipeline([('reduce', SelectKBest()),
... ('clf', LogisticRegression())])
>>> gs = GridSearchCV(pipe,
... {'reduce__k': [5, 10, 20],
... 'clf__C': [.1, 1, 10]})
to::
>>> pipe = Pipeline([('reduce', PCA()),
... ('clf', LogisticRegression())])
>>> gs = GridSearchCV(pipe,
... {'reduce__n_components': [5, 10, 20],
... 'clf__C': [.1, 1, 10]})
Note that ``reduce__k`` became ``reduce__n_components``.
With ``searchgrid`` it's easier because you change the estimator and the
parameters in the same place::
>>> reduce = set_grid(SelectKBest(), k=[5, 10, 20])
>>> lr = set_grid(LogisticRegression(), C=[.1, 1, 10])
>>> pipe = Pipeline([('reduce', reduce),
... ('clf', lr)])
>>> gs = make_grid_search(pipe)
becomes::
>>> reduce = set_grid(PCA(), n_components=[5, 10, 20])
>>> lr = set_grid(LogisticRegression(), C=[.1, 1, 10])
>>> pipe = Pipeline([('reduce', reduce),
... ('clf', lr)])
>>> gs = make_grid_search(pipe)
Searching over multiple grids.
You want to take the code from the previous example, but instead search
over feature selection and PCA reduction in the same search.
Without ``searchgrid``::
>>> pipe = Pipeline([('reduce', None),
... ('clf', LogisticRegression())])
>>> gs = GridSearchCV(pipe, [{'reduce': [SelectKBest()],
... 'reduce__k': [5, 10, 20],
... 'clf__C': [.1, 1, 10]},
... {'reduce': [PCA()],
... 'reduce__n_components': [5, 10, 20],
... 'clf__C': [.1, 1, 10]}])
With ``searchgrid``::
>>> kbest = set_grid(SelectKBest(), k=[5, 10, 20])
>>> pca = set_grid(PCA(), n_components=[5, 10, 20])
>>> lr = set_grid(LogisticRegression(), C=[.1, 1, 10])
>>> pipe = set_grid(Pipeline([('reduce', None),
... ('clf', lr)]),
... reduce=[kbest, pca])
>>> gs = make_grid_search(pipe)
.. |py-versions| image:: https://img.shields.io/pypi/pyversions/searchgrid.svg
:alt: Python versions supported
.. |version| image:: https://badge.fury.io/py/searchgrid.svg
:alt: Latest version on PyPi
:target: https://badge.fury.io/py/searchgrid
.. |build| image:: https://travis-ci.org/jnothman/searchgrid.svg?branch=master
:alt: Travis CI build status
:scale: 100%
:target: https://travis-ci.org/jnothman/searchgrid
.. |issues| image:: https://img.shields.io/github/issues/jnothman/searchgrid.svg
:alt: Issue tracker
:target: https://github.com/jnothman/searchgrid
.. |coverage| image:: https://coveralls.io/repos/github/jnothman/searchgrid/badge.svg
:alt: Test coverage
:target: https://coveralls.io/github/jnothman/searchgrid
.. |docs| image:: https://readthedocs.org/projects/searchgrid/badge/?version=latest
:alt: Documentation Status
:scale: 100%
:target: https://searchgrid.readthedocs.io/en/latest/?badge=latest
.. |licence| image:: https://img.shields.io/badge/Licence-BSD-blue.svg
:target: https://opensource.org/licenses/BSD-3-Clause
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
searchgrid-0.1.tar.gz
(4.9 kB
view details)
File details
Details for the file searchgrid-0.1.tar.gz
.
File metadata
- Download URL: searchgrid-0.1.tar.gz
- Upload date:
- Size: 4.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7b6f832f83e77d599644dcba9f5d2f385d3c6923b23aeddb345bf1e255d60c6e |
|
MD5 | 9a4349ef6135bae4ab35429ac6803900 |
|
BLAKE2b-256 | 368f86cb25fd073f5054be9f75b9378dafd424e42836ba3074bc2b026f60403c |