Skip to main content

No project description provided

Project description

SemSQL: standard SQL views for RDF/OWL ontologies

PyPI version

This project provides a standard collection of SQL tables/views for ontologies, such that you can make queries like this, to find all terms starting with Abnormality in HPO.

$ sqlite db/hp.db
sqlite> SELECT * FROM rdfs_label_statement WHERE value LIKE 'Abnormality of %';
stanza subject predicate object value datatype language
HP:0000002 HP:0000002 rdfs:label Abnormality of body height xsd:string
HP:0000014 HP:0000014 rdfs:label Abnormality of the bladder xsd:string
HP:0000022 HP:0000022 rdfs:label Abnormality of male internal genitalia xsd:string
HP:0000032 HP:0000032 rdfs:label Abnormality of male external genitalia xsd:string

Ready-made SQLite3 builds can also be downloaded for any ontology in OBO, using URLs such as https://s3.amazonaws.com/bbop-sqlite/hp.db

relation-graph is used to pre-generate tables of entailed edges. For example, all is-a and part-of ancestors of finger in Uberon:

$ sqlite db/uberon.db
sqlite> SELECT * FROM entailed_edge WHERE subject='UBERON:0002389' and predicate IN ('rdfs:subClassOf', 'BFO:0000050');
subject, predicate, object
UBERON:0002389, BFO:0000050, UBERON:0015212
UBERON:0002389, BFO:0000050, UBERON:5002389
UBERON:0002389, BFO:0000050, UBERON:5002544
UBERON:0002389, rdfs:subClassOf, UBERON:0000061
UBERON:0002389, rdfs:subClassOf, UBERON:0000465
UBERON:0002389, rdfs:subClassOf, UBERON:0000475

SQLite provides many advantages

  • files can be downloaded and subsequently queried without network latency
  • compared to querying a static rdf, owl, or obo file, there is no startup/parse delay
  • robust and performant
  • excellent support in many languages

Although the focus is on SQLite, this library can also be used for other DBMSs like PostgreSQL, MySQL, Oracle, etc

Tutorials

Installation

SemSQL comes with a helper Python library. Use of this is optional. To install:

pip install semsql

Download ready-made SQLite databases

Pre-generated SQLite database are created weekly for all OBO ontologies and a selection of others (see ontologies.yaml)

To download:

semsql download obi -o obi.db

Or simply download using URL of the form:

Attaching databases

If you are using sqlite3, then databases can be attached to facilitate cross-database joins.

For example, many ontologies use ORCID URIs as the object of dcterms:contributor and dcterms:creator statements, but these are left "dangling". Metadata about these orcids are available in the semsql orcid database instance (derived from wikidata-orcid-ontology), in the Orcid table.

You can use ATTACH DATABASE to connect two databases, for example:

$ sqlite3 db/cl.dl
sqlite> attach 'db/orcid.db' as orcid_db;
sqlite> select * from contributor inner join orcid_db.orcid on (orcid.id=contributor.object) where orcid.label like 'Chris%';
obo:cl.owl|obo:cl.owl|dcterms:contributor|orcid:0000-0002-6601-2165||||orcid:0000-0002-6601-2165|Christopher J. Mungall
CL:0010001|CL:0010001|dcterms:contributor|orcid:0000-0002-6601-2165||||orcid:0000-0002-6601-2165|Christopher J. Mungall
CL:0010002|CL:0010002|dcterms:contributor|orcid:0000-0002-6601-2165||||orcid:0000-0002-6601-2165|Christopher J. Mungall
CL:0010003|CL:0010003|dcterms:contributor|orcid:0000-0002-6601-2165||||orcid:0000-0002-6601-2165|Christopher J. Mungall
CL:0010004|CL:0010004|dcterms:contributor|orcid:0000-0002-6601-2165||||orcid:0000-0002-6601-2165|Christopher J. Mungall
UBERON:0000093|UBERON:0000093|dcterms:contributor|orcid:0000-0002-6601-2165||||orcid:0000-0002-6601-2165|Christopher J. Mungall
UBERON:0000094|UBERON:0000094|dcterms:contributor|orcid:0000-0002-6601-2165||||orcid:0000-0002-6601-2165|Christopher J. Mungall
UBERON:0000095|UBERON:0000095|dcterms:contributor|orcid:0000-0002-6601-2165||||orcid:0000-0002-6601-2165|Christopher J. Mungall
UBERON:0000179|UBERON:0000179|dcterms:contributor|orcid:0000-0002-6601-2165||||orcid:0000-0002-6601-2165|Christopher J. Mungall
UBERON:0000201|UBERON:0000201|dcterms:contributor|orcid:0000-0002-6601-2165||||orcid:0000-0002-6601-2165|Christopher J. Mungall
UBERON:0000202|UBERON:0000202|dcterms:contributor|orcid:0000-0002-6601-2165||||orcid:0000-0002-6601-2165|Christopher J. Mungall
UBERON:0000203|UBERON:0000203|dcterms:contributor|orcid:0000-0002-6601-2165||||orcid:0000-0002-6601-2165|Christopher J. Mungall
UBERON:0000204|UBERON:0000204|dcterms:contributor|orcid:0000-0002-6601-2165||||orcid:0000-0002-6601-2165|Christopher J. Mungall

Creating a SQLite database from an OWL file

There are two protocols for doing this:

  1. install build dependencies
  2. use Docker

In either case:

  • The input MUST be in RDF/XML serialization and have the suffix .owl:
  • use robot to convert if format is different

We are planning to simplify this process in future.

1. Build a SQLite database directly

This requires some basic technical knowledge about how to install things on your machine and how to put things in your PATH. It does not require Docker.

Requirements:

After installing these and putting both relation-graph and rdftab.rs in your path:

semsql make foo.db

This assumes foo.owl is in the same folder

2. Use Docker

There are two docker images that can be used:

The ODK image may lag behind

docker run  -v $PWD:/work -w /work -ti linkml/semantic-sql semsql make foo.db

Schema

See Schema Documentation

The source schema is in LinkML - this is then compiled down to SQL Tables and Views

The basic idea is as follows:

There are a small number of "base tables":

All other tables are actually views (derived tables), and are provided for convenience.

ORM Layer

A SemSQL relational database can be accessed in exactly the same way as any other SQLdb

For convenience, we provide a Python Object-Relational Mapping (ORM) layer using SQL Alchemy. This allows for code uchlike the following, which joins RdfsSubclassOfStatement and existential restrictions:

engine = create_engine(f"sqlite:////path/to/go.db")
SessionClass = sessionmaker(bind=engine)
session = SessionClass()
q = session.query(RdfsSubclassOfStatement)
q = q.add_entity(OwlSomeValuesFrom)
q = q.join(OwlSomeValuesFrom, RdfsSubclassOfStatement.object == OwlSomeValuesFrom.id)

lines = []
for ax, ex in q.all():
    line = f'{ax.subject} subClassOf {ex.on_property} SOME {ex.filler}'
    logging.info(line)
    lines.append(line)

(this example is just for illustration - to do the same thing there is a simpler Edge relation)

Applications

The semsql python library is intentionally low level - we recommend using the ontology-access-kit

For example:

runoak -i db/envo.db search t~biome

You can also pass in an OWL file and have the sqlite be made on the fly

runoak -i sqlite:envo.owl search t~biome

Even if using OAK, it can be useful to access SQL tables directly to do complex multi-join queries in a performant way.

Optimization

poetry run semsql view2table edge --full-index | sqlite3 $db/mydb.db

See indexes for some ready-made indexes

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

semsql-0.3.3.tar.gz (115.0 kB view details)

Uploaded Source

Built Distribution

semsql-0.3.3-py3-none-any.whl (132.9 kB view details)

Uploaded Python 3

File details

Details for the file semsql-0.3.3.tar.gz.

File metadata

  • Download URL: semsql-0.3.3.tar.gz
  • Upload date:
  • Size: 115.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.18

File hashes

Hashes for semsql-0.3.3.tar.gz
Algorithm Hash digest
SHA256 af75543bbe7469b856f58653d490095527f3653c6b499e27a714c6da78f1d185
MD5 e22a37c155ecc15178e743f1d016cd47
BLAKE2b-256 d68d66e8026acf89a6f55f7aaa40730ad99726102bff58d0a9a8373b7417923d

See more details on using hashes here.

File details

Details for the file semsql-0.3.3-py3-none-any.whl.

File metadata

  • Download URL: semsql-0.3.3-py3-none-any.whl
  • Upload date:
  • Size: 132.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.18

File hashes

Hashes for semsql-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 7249cf1faf61dabf2605a06dd0955775e1adad2e462e3f95ebbb1b7caed0e54c
MD5 b77f83e9e20acf68b2040613ac8173ab
BLAKE2b-256 87ea994000531bb45ea2d9496bea2426d838f446cbbd4300acd82967b153bc56

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page