Skip to main content

SGEXT is an open-source toolkit for skeletonization and graph analysis

Project description

SGEXT is an open-source, cross-platform library for skeletonization of vascular/filaments images and tools for the posterior graph analysis, using a spatial graph as an encriched graph with geometric information.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

sgext-0.9.16-cp311-cp311-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

sgext-0.9.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (37.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

sgext-0.9.16-cp311-cp311-macosx_10_9_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

sgext-0.9.16-cp310-cp310-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

sgext-0.9.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (37.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

sgext-0.9.16-cp310-cp310-macosx_10_9_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

sgext-0.9.16-cp39-cp39-win_amd64.whl (10.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

sgext-0.9.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (37.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

sgext-0.9.16-cp39-cp39-macosx_10_9_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

sgext-0.9.16-cp38-cp38-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

sgext-0.9.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (37.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

sgext-0.9.16-cp38-cp38-macosx_10_9_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

sgext-0.9.16-cp37-cp37m-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

sgext-0.9.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (37.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

sgext-0.9.16-cp37-cp37m-macosx_10_9_x86_64.whl (15.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file sgext-0.9.16-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: sgext-0.9.16-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for sgext-0.9.16-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d634b2cafa16807692426a4be39d10e216dd3dd17f42de690a36fd1516aa0aea
MD5 62b960bbb54011927148824ede627a1f
BLAKE2b-256 f3e6a064d74f0117fc9a6f83b8bc27a976795160bc0bebb2502410f5f80d6ff9

See more details on using hashes here.

File details

Details for the file sgext-0.9.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sgext-0.9.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 199f4900344a6be54ad45458e83d06894be64a32636dccdea19d78569a74fc21
MD5 5e57adc4dd40374a18277ba1222ed9ff
BLAKE2b-256 c0017d29db4bde5050d675c6f52449f2669d2ee45f36f29f02475208ebdb9b8f

See more details on using hashes here.

File details

Details for the file sgext-0.9.16-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sgext-0.9.16-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5b18eeca46835def61930311f7998360a8babb1289bcc856e607021c6fa07548
MD5 c0419f11260312f45ec7d45fdede75e6
BLAKE2b-256 c2e0ba36662a0180c6e89728d4afff1275b34643fcf0604fa768ba2429b399b6

See more details on using hashes here.

File details

Details for the file sgext-0.9.16-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: sgext-0.9.16-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for sgext-0.9.16-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0d6dc5b95f7a01cffa4493d0e5a0fed317612a3cd37910e6bccf5afcf6eaa42d
MD5 1e17f99e4f2b3ee50acabde15ef7ff0e
BLAKE2b-256 9e1bb6276f5c8834f600c03d11bbb9312ca59f8f4135b03b0d5530f02e64ae53

See more details on using hashes here.

File details

Details for the file sgext-0.9.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sgext-0.9.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3952c145e8c37aa953809e8dda16203bad07204c27c3c05a09e1827821032aec
MD5 0be6a5c1eeeb162ce0fc5d5d95c8bf0c
BLAKE2b-256 230fc8d9b09a510ece4b91a1aa990b0293a21a1537ab45bfc8f2f994f484891d

See more details on using hashes here.

File details

Details for the file sgext-0.9.16-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sgext-0.9.16-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 44b6dae0e85922a587ec5ff76fe49820ef0fbf19654e11441311c4de0a96e0fb
MD5 f061ef46875eea1c2290beee5f163097
BLAKE2b-256 01764a517c53fea56e7ead50384a98f21b9bdaf17559f24be99b525ee484fba6

See more details on using hashes here.

File details

Details for the file sgext-0.9.16-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: sgext-0.9.16-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for sgext-0.9.16-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8897d0874106631756df199195caf683b5b1987d89dc5298543a9fd3a87a9fc4
MD5 51e4d266c3977db36567b5a6d0cc96dc
BLAKE2b-256 306790431eaa47abb20edef91386e02be20a396e4b98ec098683741235a03e67

See more details on using hashes here.

File details

Details for the file sgext-0.9.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sgext-0.9.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 141a31e39518cf4f5e9cdb10692ff63b0421548ebf28f0e63c21d11817354e1b
MD5 9d5ad9631bdce7bf849aaba62a8d522f
BLAKE2b-256 db34e260bf4b3901b2a57945b539dc93d189dc60ccced61c2ea6f7a016f52326

See more details on using hashes here.

File details

Details for the file sgext-0.9.16-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sgext-0.9.16-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cfa9ebff49180d15651fe4df1f4363768d3cd891781a4ea0f46305392d88de62
MD5 5599060e61c5a9d02b0a52e1275dae47
BLAKE2b-256 9ebc345a777f9292f603c5716611452963e71ed63b5e140a67f4d0958f3f2307

See more details on using hashes here.

File details

Details for the file sgext-0.9.16-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: sgext-0.9.16-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for sgext-0.9.16-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 da0e96171ac1b4e4b0a061c2febfccfe65b4b78db370d4df48d3ef8dbe078901
MD5 8b7ab567c44ebcc0ccdd0e4bb2460a34
BLAKE2b-256 3759a070bf59e489358023917e73663460c93c4278f5964a7e292ce3e1083866

See more details on using hashes here.

File details

Details for the file sgext-0.9.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sgext-0.9.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1ffc34593ca661a070a23e14c1bb64395150ca83675c60b51b4415c02d4be4bd
MD5 7991338b93e1b51dcc1d28557df00414
BLAKE2b-256 ce5ac58ea79f527a80b28aa990b7fd4ca620ee09d99c12b3571625b8449cc210

See more details on using hashes here.

File details

Details for the file sgext-0.9.16-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sgext-0.9.16-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 76e0b650d22b6db2076f5715fb002fab9a039f5dafebf1d72e14a353d3e3fa0d
MD5 7e0285bca9d65e02d213a86686d8710b
BLAKE2b-256 0d1105383ca819a301147e8484ef5b5f34c7d0f8365f477e0908dd27dcf27fdb

See more details on using hashes here.

File details

Details for the file sgext-0.9.16-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: sgext-0.9.16-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for sgext-0.9.16-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f7bdd48072c4892cb886a2ea74281fd35bc770b6b84cf560c25bbd356459ed40
MD5 d28a1eeaab699a02d197a59e73544cc1
BLAKE2b-256 dbdb21ff06a12dce0cf8dcee43aca291f95cc3aeb9675d984e1085072eee8e14

See more details on using hashes here.

File details

Details for the file sgext-0.9.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sgext-0.9.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2344ecb1ec066f1db285972670a2e99700abb22baae557521aa5dc27c1bebae8
MD5 676a27ad75e918a227bcfb2e1d455c5a
BLAKE2b-256 902b54cb9966bdae0e75bc1f7f6897a475f9d52f7c2b96a514400068ef357ae6

See more details on using hashes here.

File details

Details for the file sgext-0.9.16-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sgext-0.9.16-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3dfef0476e21e09b0b94fd1d9aeb32f3e8f146f136cc500bf8f3ff0604589801
MD5 3439f9d59364dc43c080c1665a5a20a4
BLAKE2b-256 eaf1038effdc8e62eb4792c3da594ce5681efc33769602c82d9e6bf7405bd31f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page