Skip to main content

Python utilities for compliant Azure machine learning

Project description

Shrike: incubation for Azure ML

CodeQL docs python Component Governance Python versions code style: black codecov PyPI - Downloads PyPI version license: MIT

The shrike library is a set of Python utilities for running experiments in the Azure Machine Learning platform (a.k.a. Azure ML). This library contains four elements, which are:

  • shrike.compliant_logging: utilities for compliant logging and exception handling;
  • shrike.pipeline: helper code for managing, validating and submitting Azure ML pipelines based on azure-ml-component (a.k.a. the Component SDK);
  • shrike.build: helper code for packaging, building, validating, signing and registering Azure ML components.
  • shrike.spark: utilities for running jobs, especially those leveraging Spark .NET, in HDInsight and later Synapse.

Documentation

For the full documentation of shrike with detailed examples and API reference, please see the docs page.

For a list of problems (along with guidance and solutions) designed specifically to help you learn how to use shrike, please refer to the information in this README file (located in another GitHub repository).

Installation

The shrike library is publicly available in PyPi. There are three optional extra dependencies: pipeline, build, and dev. The pipeline dependency is for submitting Azure ML pipelines, build is for signing and registering components, and dev is for the development environment of shrike.

  • If you are only planning on using the compliant-logging feature, please pip install without any extras:
pip install shrike
  • If you are planning on signing and registering components, please pip install with [build]:
pip install shrike[build]
  • If you are planning on submitting Azure ML pipelines, please pip install with [pipeline]:
pip install shrike[pipeline]
  • If you would like to contribute to the source code, please pip install with all the dependencies:
pip install shrike[pipeline,build,dev]

Alternatively, for local development, you may use the Conda environment defined in environment.yml. It pins the appropriate versions of pip, Python, and installs all shrike together with all extras as an editable package.

:warning: If you are using a ZSH terminal, please consider adding quotes, e.g., pip install "shrike[pipeline,build,dev]" to avoid the accidental shell expansion.

Migration from aml-build-tooling, aml-ds-pipeline-contrib, and confidential-ml-utils

If you have been using the aml-build-tooling, aml-ds-pipeline-contrib, or confidential-ml-utils libraries, please use the migration script (migration.py) to convert your repo or files and adopt the shrike package with one simple command:

python migraton.py --input_path PATH/TO/YOUR/REPO/OR/FILE

:warning: This command will update files in-place. Please make a copy of your repo/file if you do not want to do so.

Need Support?

If you have any feature requests, technical questions, or find any bugs, please do not hesitate to reach out to us.

  • For bug reports and feature requests, you are welcome to open an issue.
  • If you are a Microsoft employee, please refer to the support page for details;
  • If you are outside Microsoft, please send an email to aims-team@microsoft.com.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

To contribute, please start by creating a self-assigned issue giving a high-level overview of what you'd like to do. Once any discussion there concludes, follow up with a PR.

Please join the security group "aml-ds-guests" on IDweb, if you have difficulty in creating a branch. When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

shrike-2.0.0.dev6.tar.gz (158.0 kB view details)

Uploaded Source

Built Distribution

shrike-2.0.0.dev6-py3-none-any.whl (178.9 kB view details)

Uploaded Python 3

File details

Details for the file shrike-2.0.0.dev6.tar.gz.

File metadata

  • Download URL: shrike-2.0.0.dev6.tar.gz
  • Upload date:
  • Size: 158.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for shrike-2.0.0.dev6.tar.gz
Algorithm Hash digest
SHA256 24a34139aa952c6c3e3670658235cc47c9650f42549071b467ae1be9c623b453
MD5 b634409723b2ad6c94ed7233544b58ad
BLAKE2b-256 88e1319141445f341fb42979fa6a6bd3c1880d404b6a3e0ad00866a49983caac

See more details on using hashes here.

File details

Details for the file shrike-2.0.0.dev6-py3-none-any.whl.

File metadata

  • Download URL: shrike-2.0.0.dev6-py3-none-any.whl
  • Upload date:
  • Size: 178.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for shrike-2.0.0.dev6-py3-none-any.whl
Algorithm Hash digest
SHA256 46c367871c4ed926ffb501c687df7e6e8e2491bcfd5b8df33cf17e9e55489f57
MD5 83444446c9d183b0fbbf11f2c26644c6
BLAKE2b-256 17c757635ba54ee16edd818995b35d7aaadf5f87f0cb2cea89165e6afee539f1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page