Skip to main content

Bayesian NMF methods for mutational signature analysis & transcriptomic profiling on GPUs (Getz Lab).

Project description

SignatureAnalyzer

Automatic Relevance Determination (ARD) - NMF of mutational signature & expression data. Designed for scalability using Pytorch to run using GPUs if available.

  • See docs for a more in-depth description of how to use method.

Requires Python 3.6.0 or higher.

Installation

PIP

pip3 install signatureanalyzer

or

Git Clone
  • git clone --recursive https://github.com/broadinstitute/getzlab-SignatureAnalyzer.git
  • cd getzlab-SignatureAnalyzer
  • pip3 install -e .

Note --recurisve flag is required to clone submodules.

Docker

Coming soon.


Source Publications

SignatureAnalyzer-GPU source publication

SignatureAnalyzer-CPU source publications

  • Kim, J. et al. Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors. Nat. Genet. 48, 600–606 (2016). (https://www.nature.com/articles/ng.3557)

  • Kasar, S. et al. Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution. Nat. Commun. 6, 8866 (2015). (https://www.nature.com/articles/ncomms9866)

Mathematical details

  • Tan, V. Y. F., Edric, C. & Evotte, F. Automatic Relevance Determination in Nonnegative Matrix Factorization with the β-Divergence. (2012). (https://arxiv.org/pdf/1111.6085.pdf)

Command Line Interface

usage: signatureanalyzer [-h] --input INPUT [-t {maf,spectra,matrix}]
                         [-n NRUNS] [-o OUTDIR]
                         [--cosmic {cosmic2,cosmic3,cosmic3_exome,cosmic3_DBS,cosmic3_ID,cosmic3_TSB}]
                         [--hg_build HG_BUILD] [--cuda_int CUDA_INT]
                         [--verbose] [--K0 K0] [--max_iter MAX_ITER]
                         [--del_ DEL_] [--tolerance TOLERANCE] [--phi PHI]
                         [--a A] [--b B] [--objective {poisson,gaussian}]
                         [--prior_on_W {L1,L2}] [--prior_on_H {L1,L2}]
                         [--report_freq REPORT_FREQ]
                         [--active_thresh ACTIVE_THRESH] [--cut_norm CUT_NORM]
                         [--cut_diff CUT_DIFF]

Example:

signatureanalyzer input.maf -n 10 --cosmic cosmic2 --objective poisson

Python API

import signatureanalyzer as sa

# ---------------------
# RUN SIGNATURE ANALYZER
# ---------------------

# Run array of decompositions with mutational signature processing
sa.run_maf(input.maf, outdir='./ardnmf_output/', cosmic='cosmic2', hg_build='hg19', nruns=10)

# Run ARD-NMF algorithm standalone
sa.ardnmf(...)

# ---------------------
# LOADING RESULTS
# ---------------------
import pandas as pd

H = pd.read_hdf('nmf_output.h5', 'H')
W = pd.read_hdf('nmf_output.h5', 'W')
Hraw = pd.read_hdf('nmf_output.h5', 'Hraw')
Wraw = pd.read_hdf('nmf_output.h5', 'Wraw')
feature_signatures = pd.read_hdf('nmf_output.h5', 'signatures')
markers = pd.read_hdf('nmf_output.h5', 'markers')
cosine = pd.read_hdf('nmf_output.h5', 'cosine')
log = pd.read_hdf('nmf_output.h5', 'log')

# Output for each run may be found at...
Hrun1 = pd.read_hdf('nmf_output.h5', 'run1/H')
Wrun1 = pd.read_hdf('nmf_output.h5', 'run1/W')
# etc...

# Aggregate output information for each run
aggr = pd.read_hdf('nmf_output.h5', 'aggr')

# ---------------------
# PLOTTING
# ---------------------
sa.pl.marker_heatmap(...)
sa.pl.signature_barplot(...)
sa.pl.stacked_bar(...)
sa.pl.k_dist(...)
sa.pl.consensus_matrix(...)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

signatureanalyzer-0.0.2.tar.gz (159.2 kB view details)

Uploaded Source

Built Distribution

signatureanalyzer-0.0.2-py3-none-any.whl (168.6 kB view details)

Uploaded Python 3

File details

Details for the file signatureanalyzer-0.0.2.tar.gz.

File metadata

  • Download URL: signatureanalyzer-0.0.2.tar.gz
  • Upload date:
  • Size: 159.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.7.4

File hashes

Hashes for signatureanalyzer-0.0.2.tar.gz
Algorithm Hash digest
SHA256 2b1c8d7064fd69c533c585b9b372cab44305df64e612b812f6596da451d708d4
MD5 445dae7cfe45dc881d377cea4fcae3bc
BLAKE2b-256 a6d36498ecf8e615d201a3eaec1af5dda9a3e31a4896912d2df82057b43e3b6b

See more details on using hashes here.

File details

Details for the file signatureanalyzer-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: signatureanalyzer-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 168.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.7.4

File hashes

Hashes for signatureanalyzer-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 de8df0245ae30baada28cb4cd1878d6cb6aa3b784e8a3edfb694b92175dbf739
MD5 ffabb3eea16e9b6485728ed11726070b
BLAKE2b-256 45c530cd2067cf47fdcde7ce0a623ccbcd87961b977573edc8a7b1b5dfb9c9cc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page