Bayesian NMF methods for mutational signature analysis & transcriptomic profiling on GPUs (Getz Lab).
Project description
SignatureAnalyzer
Automatic Relevance Determination (ARD) - NMF of mutational signature & expression data. Designed for scalability using Pytorch to run using GPUs if available.
- See
docs
for a more in-depth description of how to use method.
Requires Python 3.6.0 or higher.
Installation
PIP
pip3 install signatureanalyzer
or
Git Clone
git clone --recursive https://github.com/broadinstitute/getzlab-SignatureAnalyzer.git
cd getzlab-SignatureAnalyzer
pip3 install -e .
Note --recurisve
flag is required to clone submodules.
Docker
Link: http://gcr.io/broad-cga-sanand-gtex/signatureanalyzer
docker pull gcr.io/broad-cga-sanand-gtex/signatureanalyzer:latest
docker run -it --rm gcr.io/broad-cga-sanand-gtex/signatureanalyzer
Source Publications
PCAWG Mutational Signatures
- Alexandrov, L. B., Kim, J., Haradhvala, N. J., Huang, M. N., Ng, A. W. T., Wu, Y., ... & Islam, S. A. (2020). The repertoire of mutational signatures in human cancer. Nature, 578(7793), 94-101.
- see: https://www.nature.com/articles/s41586-020-1943-3
- see
./PCAWG/
SignatureAnalyzer-GPU source publication
- Taylor-Weiner, A., Aguet, F., Haradhvala, N.J. et al. Scaling computational genomics to millions of individuals with GPUs. Genome Biol 20, 228 (2019) doi:10.1186/s13059-019-1836-7 (https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1836-7)
SignatureAnalyzer-CPU source publications
-
Kim, J. et al. Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors. Nat. Genet. 48, 600–606 (2016). (https://www.nature.com/articles/ng.3557)
-
Kasar, S. et al. Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution. Nat. Commun. 6, 8866 (2015). (https://www.nature.com/articles/ncomms9866)
Mathematical details
- Tan, V. Y. F., Edric, C. & Evotte, F. Automatic Relevance Determination in Nonnegative Matrix Factorization with the β-Divergence. (2012). (https://arxiv.org/pdf/1111.6085.pdf)
Command Line Interface
usage: signatureanalyzer [-h] [-t {maf,spectra,matrix}] [-n NRUNS] [-o OUTDIR]
[--cosmic {cosmic2,cosmic3,cosmic3_exome,cosmic3_DBS,cosmic3_ID,cosmic3_TSB}]
[--hg_build HG_BUILD] [--cuda_int CUDA_INT]
[--verbose] [--K0 K0] [--max_iter MAX_ITER]
[--del_ DEL_] [--tolerance TOLERANCE] [--phi PHI]
[--a A] [--b B] [--objective {poisson,gaussian}]
[--prior_on_W {L1,L2}] [--prior_on_H {L1,L2}]
[--report_freq REPORT_FREQ]
[--active_thresh ACTIVE_THRESH] [--cut_norm CUT_NORM]
[--cut_diff CUT_DIFF]
input
Example:
signatureanalyzer input.maf -n 10 --cosmic cosmic2 --objective poisson
Python API
import signatureanalyzer as sa
# ---------------------
# RUN SIGNATURE ANALYZER
# ---------------------
# Run array of decompositions with mutational signature processing
sa.run_maf(input.maf, outdir='./ardnmf_output/', cosmic='cosmic2', hg_build='./ref/hg19.2bit', nruns=10)
# Run ARD-NMF algorithm standalone
sa.ardnmf(...)
# ---------------------
# LOADING RESULTS
# ---------------------
import pandas as pd
H = pd.read_hdf('nmf_output.h5', 'H')
W = pd.read_hdf('nmf_output.h5', 'W')
Hraw = pd.read_hdf('nmf_output.h5', 'Hraw')
Wraw = pd.read_hdf('nmf_output.h5', 'Wraw')
feature_signatures = pd.read_hdf('nmf_output.h5', 'signatures')
markers = pd.read_hdf('nmf_output.h5', 'markers')
cosine = pd.read_hdf('nmf_output.h5', 'cosine')
log = pd.read_hdf('nmf_output.h5', 'log')
# Output for each run may be found at...
Hrun1 = pd.read_hdf('nmf_output.h5', 'run1/H')
Wrun1 = pd.read_hdf('nmf_output.h5', 'run1/W')
# etc...
# Aggregate output information for each run
aggr = pd.read_hdf('nmf_output.h5', 'aggr')
# ---------------------
# PLOTTING
# ---------------------
sa.pl.marker_heatmap(...)
sa.pl.signature_barplot(...)
sa.pl.stacked_bar(...)
sa.pl.k_dist(...)
sa.pl.consensus_matrix(...)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file signatureanalyzer-0.0.6.tar.gz
.
File metadata
- Download URL: signatureanalyzer-0.0.6.tar.gz
- Upload date:
- Size: 169.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c8ec35e3fcdb4dd999342753467279b06d009920e61255b47c2681a53903aa26 |
|
MD5 | 851a532b5cacafecc595c47abe49b9fa |
|
BLAKE2b-256 | 51e7dcc77f1c6a895e41d9234a87641c4cf08901c39783a83180b5b1a071ca03 |
File details
Details for the file signatureanalyzer-0.0.6-py3-none-any.whl
.
File metadata
- Download URL: signatureanalyzer-0.0.6-py3-none-any.whl
- Upload date:
- Size: 178.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 365ee31f01cf58f6d19bd9028d34fe1f745bacab7758d6be488d5ba41dccb505 |
|
MD5 | 92de86cd3fcefa384c9e8dfaa445b3f8 |
|
BLAKE2b-256 | f3dbc7eece66f91cc4e68f77131205bc66940bd858a4edb18d0d9e6c39a5228f |