Skip to main content

Bayesian NMF methods for mutational signature analysis & transcriptomic profiling on GPUs (Getz Lab).

Project description

SignatureAnalyzer

Automatic Relevance Determination (ARD) - NMF of mutational signature & expression data. Designed for scalability using Pytorch to run using GPUs if available.

  • See docs for a more in-depth description of how to use method.

Requires Python 3.6.0 or higher.

Installation

PIP

pip3 install signatureanalyzer

or

Git Clone
  • git clone --recursive https://github.com/broadinstitute/getzlab-SignatureAnalyzer.git
  • cd getzlab-SignatureAnalyzer
  • pip3 install -e .

Note --recurisve flag is required to clone submodules.

Docker

Link: http://gcr.io/broad-cga-sanand-gtex/signatureanalyzer

  • docker pull gcr.io/broad-cga-sanand-gtex/signatureanalyzer:latest
  • docker run -it --rm gcr.io/broad-cga-sanand-gtex/signatureanalyzer

Source Publications

PCAWG Mutational Signatures

  • Alexandrov, L. B., Kim, J., Haradhvala, N. J., Huang, M. N., Ng, A. W. T., Wu, Y., ... & Islam, S. A. (2020). The repertoire of mutational signatures in human cancer. Nature, 578(7793), 94-101.
  • see: https://www.nature.com/articles/s41586-020-1943-3
  • see ./PCAWG/

SignatureAnalyzer-GPU source publication

SignatureAnalyzer-CPU source publications

  • Kim, J. et al. Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors. Nat. Genet. 48, 600–606 (2016). (https://www.nature.com/articles/ng.3557)

  • Kasar, S. et al. Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution. Nat. Commun. 6, 8866 (2015). (https://www.nature.com/articles/ncomms9866)

Mathematical details

  • Tan, V. Y. F., Edric, C. & Evotte, F. Automatic Relevance Determination in Nonnegative Matrix Factorization with the β-Divergence. (2012). (https://arxiv.org/pdf/1111.6085.pdf)

Command Line Interface

usage: signatureanalyzer [-h] [-t {maf,spectra,matrix}] [-n NRUNS] [-o OUTDIR]
                         [--cosmic {cosmic2,cosmic3,cosmic3_exome,cosmic3_DBS,cosmic3_ID,cosmic3_TSB}]
                         [--hg_build HG_BUILD] [--cuda_int CUDA_INT]
                         [--verbose] [--K0 K0] [--max_iter MAX_ITER]
                         [--del_ DEL_] [--tolerance TOLERANCE] [--phi PHI]
                         [--a A] [--b B] [--objective {poisson,gaussian}]
                         [--prior_on_W {L1,L2}] [--prior_on_H {L1,L2}]
                         [--report_freq REPORT_FREQ]
                         [--active_thresh ACTIVE_THRESH] [--cut_norm CUT_NORM]
                         [--cut_diff CUT_DIFF]
                         input

Example:

signatureanalyzer input.maf -n 10 --cosmic cosmic2 --objective poisson

Python API

import signatureanalyzer as sa

# ---------------------
# RUN SIGNATURE ANALYZER
# ---------------------

# Run array of decompositions with mutational signature processing
sa.run_maf(input.maf, outdir='./ardnmf_output/', cosmic='cosmic2', hg_build='./ref/hg19.2bit', nruns=10)

# Run ARD-NMF algorithm standalone
sa.ardnmf(...)

# ---------------------
# LOADING RESULTS
# ---------------------
import pandas as pd

H = pd.read_hdf('nmf_output.h5', 'H')
W = pd.read_hdf('nmf_output.h5', 'W')
Hraw = pd.read_hdf('nmf_output.h5', 'Hraw')
Wraw = pd.read_hdf('nmf_output.h5', 'Wraw')
feature_signatures = pd.read_hdf('nmf_output.h5', 'signatures')
markers = pd.read_hdf('nmf_output.h5', 'markers')
cosine = pd.read_hdf('nmf_output.h5', 'cosine')
log = pd.read_hdf('nmf_output.h5', 'log')

# Output for each run may be found at...
Hrun1 = pd.read_hdf('nmf_output.h5', 'run1/H')
Wrun1 = pd.read_hdf('nmf_output.h5', 'run1/W')
# etc...

# Aggregate output information for each run
aggr = pd.read_hdf('nmf_output.h5', 'aggr')

# ---------------------
# PLOTTING
# ---------------------
sa.pl.marker_heatmap(...)
sa.pl.signature_barplot(...)
sa.pl.stacked_bar(...)
sa.pl.k_dist(...)
sa.pl.consensus_matrix(...)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

signatureanalyzer-0.0.6.tar.gz (169.2 kB view details)

Uploaded Source

Built Distribution

signatureanalyzer-0.0.6-py3-none-any.whl (178.7 kB view details)

Uploaded Python 3

File details

Details for the file signatureanalyzer-0.0.6.tar.gz.

File metadata

  • Download URL: signatureanalyzer-0.0.6.tar.gz
  • Upload date:
  • Size: 169.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.4

File hashes

Hashes for signatureanalyzer-0.0.6.tar.gz
Algorithm Hash digest
SHA256 c8ec35e3fcdb4dd999342753467279b06d009920e61255b47c2681a53903aa26
MD5 851a532b5cacafecc595c47abe49b9fa
BLAKE2b-256 51e7dcc77f1c6a895e41d9234a87641c4cf08901c39783a83180b5b1a071ca03

See more details on using hashes here.

File details

Details for the file signatureanalyzer-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: signatureanalyzer-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 178.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.4

File hashes

Hashes for signatureanalyzer-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 365ee31f01cf58f6d19bd9028d34fe1f745bacab7758d6be488d5ba41dccb505
MD5 92de86cd3fcefa384c9e8dfaa445b3f8
BLAKE2b-256 f3dbc7eece66f91cc4e68f77131205bc66940bd858a4edb18d0d9e6c39a5228f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page