Skip to main content

Simulated Annealing in Python

Project description

simanneal is a python implementation of the [simulated annealing optimization](http://en.wikipedia.org/wiki/Simulated_annealing) technique.

Simulated annealing is used to find a close-to-optimal solution among an extremely large (but finite) set of potential solutions. It is particularly useful for [combinatorial optimization](http://en.wikipedia.org/wiki/Combinatorial_optimization) problems defined by complex objective functions that rely on external data.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simanneal-0.4.1.tar.gz (4.4 kB view details)

Uploaded Source

Built Distributions

simanneal-0.4.1-py3.6.egg (9.4 kB view details)

Uploaded Source

simanneal-0.4.1-py3-none-any.whl (5.8 kB view details)

Uploaded Python 3

simanneal-0.4.1-py2.py3-none-any.whl (5.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file simanneal-0.4.1.tar.gz.

File metadata

  • Download URL: simanneal-0.4.1.tar.gz
  • Upload date:
  • Size: 4.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for simanneal-0.4.1.tar.gz
Algorithm Hash digest
SHA256 3d802a9cc3380b4f48c0ed427fb3c2cd44a655d064d9117e11dde0a6c48661c5
MD5 0b4950b5dd48d316f87d10ccb12e4d5d
BLAKE2b-256 ee0fc9de44d9dd2192dfa4a85f63e4828f803f1826890c9a910d248755b71d39

See more details on using hashes here.

File details

Details for the file simanneal-0.4.1-py3.6.egg.

File metadata

File hashes

Hashes for simanneal-0.4.1-py3.6.egg
Algorithm Hash digest
SHA256 5ebeeb99a0f4ff5bd7efe6edeb4054ba758567bc24537c55a28154756d577e11
MD5 c365ab9e9893dbf793680a3f2fbae30b
BLAKE2b-256 1a6228d281bee28939c594f54ff02a58394c2fd925b18af318b988068235a45f

See more details on using hashes here.

File details

Details for the file simanneal-0.4.1-py3-none-any.whl.

File metadata

File hashes

Hashes for simanneal-0.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 00e015301eaeef2906036f9f3ff70537eb165f86e8535a2c2e7757487402d7b8
MD5 7813731f47dd7a4c20a252f5499252f8
BLAKE2b-256 87e7442fca7d29e0179438e60afa984a940266c7bead806f94f5fee83f8e1d43

See more details on using hashes here.

File details

Details for the file simanneal-0.4.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for simanneal-0.4.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 6644a018e7e60339b830d62295374623a67a6f9254661f6932dd948292368b6d
MD5 c36d67bd3788ba88e1c3ea6499805e0e
BLAKE2b-256 d125651c856c270fc30cb74c5581109d0b762553f739facbc4c68a1c1e25e861

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page