Skip to main content

SimPEG: Simulation and Parameter Estimation in Geophysics

Project description

SimPEG Logo

SimPEG

Latest PyPI version MIT license Travis CI build status Coverage status codacy

Simulation and Parameter Estimation in Geophysics - A python package for simulation and gradient based parameter estimation in the context of geophysical applications.

The vision is to create a package for finite volume simulation with applications to geophysical imaging and subsurface flow. To enable the understanding of the many different components, this package has the following features:

  • modular with respect to the spacial discretization, optimization routine, and geophysical problem

  • built with the inverse problem in mind

  • provides a framework for geophysical and hydrogeologic problems

  • supports 1D, 2D and 3D problems

  • designed for large-scale inversions

You are welcome to join forum and engage with people who use and develop SimPEG at: https://groups.google.com/forum/#!forum/simpeg.

Overview Video

All of the Geophysics But Backwards

Working towards all the Geophysics, but Backwards - SciPy 2016

Citing SimPEG

There is a paper about SimPEG!

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Electromagnetics

If you are using the electromagnetics module of SimPEG, please cite:

Lindsey J. Heagy, Rowan Cockett, Seogi Kang, Gudni K. Rosenkjaer, Douglas W. Oldenburg, A framework for simulation and inversion in electromagnetics, Computers & Geosciences, Volume 107, 2017, Pages 1-19, ISSN 0098-3004, http://dx.doi.org/10.1016/j.cageo.2017.06.018.

BibTex:

@article{heagy2017,
    title= "A framework for simulation and inversion in electromagnetics",
    author= "Lindsey J. Heagy and Rowan Cockett and Seogi Kang and Gudni K. Rosenkjaer and Douglas W. Oldenburg",
    journal= "Computers & Geosciences",
    volume = "107",
    pages = "1 - 19",
    year = "2017",
    note = "",
    issn = "0098-3004",
    doi = "http://dx.doi.org/10.1016/j.cageo.2017.06.018"
}

Project details


Release history Release notifications | RSS feed

This version

0.6.4

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SimPEG-0.6.4.tar.gz (214.6 kB view details)

Uploaded Source

Built Distribution

SimPEG-0.6.4-py2.py3-none-any.whl (275.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file SimPEG-0.6.4.tar.gz.

File metadata

  • Download URL: SimPEG-0.6.4.tar.gz
  • Upload date:
  • Size: 214.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for SimPEG-0.6.4.tar.gz
Algorithm Hash digest
SHA256 c083f18b61e3fa724885bdc3b41c8de4ca0f7f72d06728ff1d98e76a91551102
MD5 0335ad898c5305e5038745cedd21fe97
BLAKE2b-256 adaa6e0e5846b1651bd1dc15ffcd68461b3d9ea0e11592c433ff6b53fd661516

See more details on using hashes here.

File details

Details for the file SimPEG-0.6.4-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for SimPEG-0.6.4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 88011dc30a15eaf2fd73d044f1ad2f18b4a9075e525bed4c41c601aa980031d6
MD5 0c42f47f3f0aa5e9b29e61c0f1fbe4c1
BLAKE2b-256 e73352a9dd1f2e3ad261111894fac89b2a96962111d8d3acda92233caec4c907

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page