Skip to main content

SimPEG: Simulation and Parameter Estimation in Geophysics

Project description

SimPEG Logo

SimPEG

Latest PyPI version MIT license Travis CI build status Coverage status codacy

Simulation and Parameter Estimation in Geophysics - A python package for simulation and gradient based parameter estimation in the context of geophysical applications.

The vision is to create a package for finite volume simulation with applications to geophysical imaging and subsurface flow. To enable the understanding of the many different components, this package has the following features:

  • modular with respect to the spacial discretization, optimization routine, and geophysical problem

  • built with the inverse problem in mind

  • provides a framework for geophysical and hydrogeologic problems

  • supports 1D, 2D and 3D problems

  • designed for large-scale inversions

You are welcome to join forum and engage with people who use and develop SimPEG at: https://groups.google.com/forum/#!forum/simpeg.

Overview Video

All of the Geophysics But Backwards

Working towards all the Geophysics, but Backwards - SciPy 2016

Citing SimPEG

There is a paper about SimPEG!

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Electromagnetics

If you are using the electromagnetics module of SimPEG, please cite:

Lindsey J. Heagy, Rowan Cockett, Seogi Kang, Gudni K. Rosenkjaer, Douglas W. Oldenburg, A framework for simulation and inversion in electromagnetics, Computers & Geosciences, Volume 107, 2017, Pages 1-19, ISSN 0098-3004, http://dx.doi.org/10.1016/j.cageo.2017.06.018.

BibTex:

@article{heagy2017,
    title= "A framework for simulation and inversion in electromagnetics",
    author= "Lindsey J. Heagy and Rowan Cockett and Seogi Kang and Gudni K. Rosenkjaer and Douglas W. Oldenburg",
    journal= "Computers & Geosciences",
    volume = "107",
    pages = "1 - 19",
    year = "2017",
    note = "",
    issn = "0098-3004",
    doi = "http://dx.doi.org/10.1016/j.cageo.2017.06.018"
}

Project details


Release history Release notifications | RSS feed

This version

0.6.5

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SimPEG-0.6.5.tar.gz (214.6 kB view details)

Uploaded Source

Built Distribution

SimPEG-0.6.5-py2.py3-none-any.whl (275.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file SimPEG-0.6.5.tar.gz.

File metadata

  • Download URL: SimPEG-0.6.5.tar.gz
  • Upload date:
  • Size: 214.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for SimPEG-0.6.5.tar.gz
Algorithm Hash digest
SHA256 e2a64119bc7f555e5906d92280d88135aeba6116d1d75076ddeef60797aa810c
MD5 9ee01be2ea2b9f9640aba444c461d551
BLAKE2b-256 bdcd06b8da6dd991e61ea23068641cfb9057e5524dc8f9a89c2b3857ef63dcd4

See more details on using hashes here.

File details

Details for the file SimPEG-0.6.5-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for SimPEG-0.6.5-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 87119e5a4769c1dead97c725b15d02cc4e3008cec6542905ecc782a86e0b5490
MD5 8dd9cef2dd9be12cfcdfb5868b2c9d27
BLAKE2b-256 48e1a0e8261aa3636bb01360f288408dab990495cf97271244b930062b3fa7ac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page