Skip to main content

SimPEG: Simulation and Parameter Estimation in Geophysics

Project description

SimPEG Logo

SimPEG

Latest PyPI version MIT license Travis CI build status Coverage status codacy

Simulation and Parameter Estimation in Geophysics - A python package for simulation and gradient based parameter estimation in the context of geophysical applications.

The vision is to create a package for finite volume simulation with applications to geophysical imaging and subsurface flow. To enable the understanding of the many different components, this package has the following features:

  • modular with respect to the spacial discretization, optimization routine, and geophysical problem

  • built with the inverse problem in mind

  • provides a framework for geophysical and hydrogeologic problems

  • supports 1D, 2D and 3D problems

  • designed for large-scale inversions

You are welcome to join forum and engage with people who use and develop SimPEG at: https://groups.google.com/forum/#!forum/simpeg.

Overview Video

All of the Geophysics But Backwards

Working towards all the Geophysics, but Backwards - SciPy 2016

Citing SimPEG

There is a paper about SimPEG!

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Electromagnetics

If you are using the electromagnetics module of SimPEG, please cite:

Lindsey J. Heagy, Rowan Cockett, Seogi Kang, Gudni K. Rosenkjaer, Douglas W. Oldenburg, A framework for simulation and inversion in electromagnetics, Computers & Geosciences, Volume 107, 2017, Pages 1-19, ISSN 0098-3004, http://dx.doi.org/10.1016/j.cageo.2017.06.018.

BibTex:

@article{heagy2017,
    title= "A framework for simulation and inversion in electromagnetics",
    author= "Lindsey J. Heagy and Rowan Cockett and Seogi Kang and Gudni K. Rosenkjaer and Douglas W. Oldenburg",
    journal= "Computers & Geosciences",
    volume = "107",
    pages = "1 - 19",
    year = "2017",
    note = "",
    issn = "0098-3004",
    doi = "http://dx.doi.org/10.1016/j.cageo.2017.06.018"
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SimPEG-0.7.0.tar.gz (227.4 kB view details)

Uploaded Source

Built Distribution

SimPEG-0.7.0-py2.py3-none-any.whl (288.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file SimPEG-0.7.0.tar.gz.

File metadata

  • Download URL: SimPEG-0.7.0.tar.gz
  • Upload date:
  • Size: 227.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for SimPEG-0.7.0.tar.gz
Algorithm Hash digest
SHA256 88a3ce2ce72e3ad3c39c2945c35ce2fd35dcb5eb2073fea3690b050cd4ef89c2
MD5 1c338a2d0d132a9dbc7daff63c51ef61
BLAKE2b-256 9aa9304565418fa5b6025476fedd4caa7996ad3ffd001553c10bc0a786c47679

See more details on using hashes here.

File details

Details for the file SimPEG-0.7.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for SimPEG-0.7.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 80152a589fde4114c4e102e474414f3f94b781e4051cf775cdb4ad8cbfd7144b
MD5 2b5bff5ff00c046939fcf8b6fbd0f0d0
BLAKE2b-256 7aced34462b09e290d81214b666218510a4ce14be217316fab0fb8f755ee06c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page