Skip to main content

SimPEG: Simulation and Parameter Estimation in Geophysics

Project description

SimPEG Logo

SimPEG

Latest PyPI version MIT license Travis CI build status Coverage status codacy

Simulation and Parameter Estimation in Geophysics - A python package for simulation and gradient based parameter estimation in the context of geophysical applications.

The vision is to create a package for finite volume simulation with applications to geophysical imaging and subsurface flow. To enable the understanding of the many different components, this package has the following features:

  • modular with respect to the spacial discretization, optimization routine, and geophysical problem

  • built with the inverse problem in mind

  • provides a framework for geophysical and hydrogeologic problems

  • supports 1D, 2D and 3D problems

  • designed for large-scale inversions

You are welcome to join forum and engage with people who use and develop SimPEG at: https://groups.google.com/forum/#!forum/simpeg.

Overview Video

All of the Geophysics But Backwards

Working towards all the Geophysics, but Backwards - SciPy 2016

Citing SimPEG

There is a paper about SimPEG!

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Electromagnetics

If you are using the electromagnetics module of SimPEG, please cite:

Lindsey J. Heagy, Rowan Cockett, Seogi Kang, Gudni K. Rosenkjaer, Douglas W. Oldenburg, A framework for simulation and inversion in electromagnetics, Computers & Geosciences, Volume 107, 2017, Pages 1-19, ISSN 0098-3004, http://dx.doi.org/10.1016/j.cageo.2017.06.018.

BibTex:

@article{heagy2017,
    title= "A framework for simulation and inversion in electromagnetics",
    author= "Lindsey J. Heagy and Rowan Cockett and Seogi Kang and Gudni K. Rosenkjaer and Douglas W. Oldenburg",
    journal= "Computers & Geosciences",
    volume = "107",
    pages = "1 - 19",
    year = "2017",
    note = "",
    issn = "0098-3004",
    doi = "http://dx.doi.org/10.1016/j.cageo.2017.06.018"
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SimPEG-0.7.1.tar.gz (228.7 kB view details)

Uploaded Source

Built Distribution

SimPEG-0.7.1-py2.py3-none-any.whl (288.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file SimPEG-0.7.1.tar.gz.

File metadata

  • Download URL: SimPEG-0.7.1.tar.gz
  • Upload date:
  • Size: 228.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for SimPEG-0.7.1.tar.gz
Algorithm Hash digest
SHA256 d0602cfd27d5f09f4d4a980b6cf10bcbc53eefe2354e28d4870663921633fef9
MD5 94bc03a90af8a2f88377cb65e21d7ef4
BLAKE2b-256 b80e91d39f4a11c9905206f5b1797a40ff8fa89af16a2a1a940af5cc62a836f3

See more details on using hashes here.

File details

Details for the file SimPEG-0.7.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for SimPEG-0.7.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 d7157fd63abcb032e49069061d609f0c59c86676a9ef28072dd79c8cf5329019
MD5 b514b27b0b34cfd51749e7e48376a9fc
BLAKE2b-256 cb706942ddfd7091415e4e46e30700e2859135c10d70695d02c8ec8753864833

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page