Skip to main content

SimPEG: Simulation and Parameter Estimation in Geophysics

Project description

SimPEG Logo

SimPEG

Latest PyPI version MIT license Travis CI build status Coverage status codacy

Simulation and Parameter Estimation in Geophysics - A python package for simulation and gradient based parameter estimation in the context of geophysical applications.

The vision is to create a package for finite volume simulation with applications to geophysical imaging and subsurface flow. To enable the understanding of the many different components, this package has the following features:

  • modular with respect to the spacial discretization, optimization routine, and geophysical problem

  • built with the inverse problem in mind

  • provides a framework for geophysical and hydrogeologic problems

  • supports 1D, 2D and 3D problems

  • designed for large-scale inversions

You are welcome to join forum and engage with people who use and develop SimPEG at: https://groups.google.com/forum/#!forum/simpeg.

Overview Video

All of the Geophysics But Backwards

Working towards all the Geophysics, but Backwards - SciPy 2016

Citing SimPEG

There is a paper about SimPEG!

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Electromagnetics

If you are using the electromagnetics module of SimPEG, please cite:

Lindsey J. Heagy, Rowan Cockett, Seogi Kang, Gudni K. Rosenkjaer, Douglas W. Oldenburg, A framework for simulation and inversion in electromagnetics, Computers & Geosciences, Volume 107, 2017, Pages 1-19, ISSN 0098-3004, http://dx.doi.org/10.1016/j.cageo.2017.06.018.

BibTex:

@article{heagy2017,
    title= "A framework for simulation and inversion in electromagnetics",
    author= "Lindsey J. Heagy and Rowan Cockett and Seogi Kang and Gudni K. Rosenkjaer and Douglas W. Oldenburg",
    journal= "Computers & Geosciences",
    volume = "107",
    pages = "1 - 19",
    year = "2017",
    note = "",
    issn = "0098-3004",
    doi = "http://dx.doi.org/10.1016/j.cageo.2017.06.018"
}

Project details


Release history Release notifications | RSS feed

This version

0.7.2

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SimPEG-0.7.2.tar.gz (228.8 kB view details)

Uploaded Source

Built Distribution

SimPEG-0.7.2-py2.py3-none-any.whl (288.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file SimPEG-0.7.2.tar.gz.

File metadata

  • Download URL: SimPEG-0.7.2.tar.gz
  • Upload date:
  • Size: 228.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for SimPEG-0.7.2.tar.gz
Algorithm Hash digest
SHA256 d77e7304220b7e2d44097ddaf539a7eee08901ce9de74c53fe0263ef4b58154d
MD5 4c8341e2500cc577306240e3bf102275
BLAKE2b-256 6fd3552296cb434a092d6af44d07d43adba5571ced2ffe3595c6c58d6819f35f

See more details on using hashes here.

File details

Details for the file SimPEG-0.7.2-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for SimPEG-0.7.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 c589ab0dad3425e226d882da758d358eefdc743169fcc1d414e2b8f35e39aa44
MD5 b28b4188d19bd187cabcda4b2a07e916
BLAKE2b-256 9fa56ab93f81300332cf3938749c30dc4f7bd95144918b657abb88ab49dc786c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page