SimPEG: Simulation and Parameter Estimation in Geophysics
Project description
SimPEG
Simulation and Parameter Estimation in Geophysics - A python package for simulation and gradient based parameter estimation in the context of geophysical applications.
The vision is to create a package for finite volume simulation with applications to geophysical imaging and subsurface flow. To enable the understanding of the many different components, this package has the following features:
modular with respect to the spacial discretization, optimization routine, and geophysical problem
built with the inverse problem in mind
provides a framework for geophysical and hydrogeologic problems
supports 1D, 2D and 3D problems
designed for large-scale inversions
You are welcome to join forum and engage with people who use and develop SimPEG at: https://groups.google.com/forum/#!forum/simpeg.
Overview Video
Working towards all the Geophysics, but Backwards - SciPy 2016
Citing SimPEG
There is a paper about SimPEG!
Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.
BibTex:
@article{cockett2015simpeg,
title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
journal={Computers \& Geosciences},
year={2015},
publisher={Elsevier}
}
Electromagnetics
If you are using the electromagnetics module of SimPEG, please cite:
Lindsey J. Heagy, Rowan Cockett, Seogi Kang, Gudni K. Rosenkjaer, Douglas W. Oldenburg, A framework for simulation and inversion in electromagnetics, Computers & Geosciences, Volume 107, 2017, Pages 1-19, ISSN 0098-3004, http://dx.doi.org/10.1016/j.cageo.2017.06.018.
BibTex:
@article{heagy2017,
title= "A framework for simulation and inversion in electromagnetics",
author= "Lindsey J. Heagy and Rowan Cockett and Seogi Kang and Gudni K. Rosenkjaer and Douglas W. Oldenburg",
journal= "Computers & Geosciences",
volume = "107",
pages = "1 - 19",
year = "2017",
note = "",
issn = "0098-3004",
doi = "http://dx.doi.org/10.1016/j.cageo.2017.06.018"
}
Links
Website: http://simpeg.xyz
Slack (real time chat): http://slack.simpeg.xyz
Documentation: http://docs.simpeg.xyz
Code: https://github.com/simpeg/simpeg
Tests: https://travis-ci.org/simpeg/simpeg
Bugs & Issues: https://github.com/simpeg/simpeg/issues
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file SimPEG-0.7.7.tar.gz
.
File metadata
- Download URL: SimPEG-0.7.7.tar.gz
- Upload date:
- Size: 248.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bcc147b185e230aec97060b516113c3056113fd1d86f581d7849f0f4cf91ab89 |
|
MD5 | 756731c3806796a5ea1db1901ecc9224 |
|
BLAKE2b-256 | 84e4c6d819aa631cd5e576416828ca28f92a908ebbbbfea454ba14a8c386c3a3 |
File details
Details for the file SimPEG-0.7.7-py2.py3-none-any.whl
.
File metadata
- Download URL: SimPEG-0.7.7-py2.py3-none-any.whl
- Upload date:
- Size: 310.7 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7fda712df86926494e7f005175fb0144cfe7e2703c24092e81331a5b45d810ed |
|
MD5 | 5e71eced9c699e80d7a3d64c94450044 |
|
BLAKE2b-256 | bbf64d432bd2b584c2caeb7d96ecbfab1e77cd3162c010373b2c3ac274b62da5 |