Skip to main content

SimPEG: Simulation and Parameter Estimation in Geophysics

Project description

SimPEG Logo

SimPEG

Latest PyPI version MIT license Travis CI build status Coverage status codacy https://zenodo.org/badge/DOI/10.5281/zenodo.1162997.svg

Simulation and Parameter Estimation in Geophysics - A python package for simulation and gradient based parameter estimation in the context of geophysical applications.

The vision is to create a package for finite volume simulation with applications to geophysical imaging and subsurface flow. To enable the understanding of the many different components, this package has the following features:

  • modular with respect to the spacial discretization, optimization routine, and geophysical problem

  • built with the inverse problem in mind

  • provides a framework for geophysical and hydrogeologic problems

  • supports 1D, 2D and 3D problems

  • designed for large-scale inversions

You are welcome to join forum and engage with people who use and develop SimPEG at: https://groups.google.com/forum/#!forum/simpeg.

Overview Video

All of the Geophysics But Backwards

Working towards all the Geophysics, but Backwards - SciPy 2016

Citing SimPEG

There is a paper about SimPEG!

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Electromagnetics

If you are using the electromagnetics module of SimPEG, please cite:

Lindsey J. Heagy, Rowan Cockett, Seogi Kang, Gudni K. Rosenkjaer, Douglas W. Oldenburg, A framework for simulation and inversion in electromagnetics, Computers & Geosciences, Volume 107, 2017, Pages 1-19, ISSN 0098-3004, http://dx.doi.org/10.1016/j.cageo.2017.06.018.

BibTex:

@article{heagy2017,
    title= "A framework for simulation and inversion in electromagnetics",
    author= "Lindsey J. Heagy and Rowan Cockett and Seogi Kang and Gudni K. Rosenkjaer and Douglas W. Oldenburg",
    journal= "Computers & Geosciences",
    volume = "107",
    pages = "1 - 19",
    year = "2017",
    note = "",
    issn = "0098-3004",
    doi = "http://dx.doi.org/10.1016/j.cageo.2017.06.018"
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SimPEG-0.9.2.tar.gz (262.2 kB view details)

Uploaded Source

Built Distribution

SimPEG-0.9.2-py2.py3-none-any.whl (331.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file SimPEG-0.9.2.tar.gz.

File metadata

  • Download URL: SimPEG-0.9.2.tar.gz
  • Upload date:
  • Size: 262.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.10.0 pkginfo/1.4.1 requests/2.18.4 setuptools/38.4.0 requests-toolbelt/0.8.0 tqdm/4.23.2 CPython/3.6.4

File hashes

Hashes for SimPEG-0.9.2.tar.gz
Algorithm Hash digest
SHA256 633e088418b6792c3fd6171da4bbcfd5763e8aa9e3541e03dbfeb8a30f58a138
MD5 ce6faa20036ebe03d85f38f614395c65
BLAKE2b-256 0a630b9918de4db7bd9642f6f825eb11eba0e4994979a108faf96f6a3ddc9535

See more details on using hashes here.

File details

Details for the file SimPEG-0.9.2-py2.py3-none-any.whl.

File metadata

  • Download URL: SimPEG-0.9.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 331.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.10.0 pkginfo/1.4.1 requests/2.18.4 setuptools/38.4.0 requests-toolbelt/0.8.0 tqdm/4.23.2 CPython/3.6.4

File hashes

Hashes for SimPEG-0.9.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 1efdb3a425c82373f4f41f776055b325a591b5a6068fff5767a698c97c359178
MD5 66a320ac04c4ab85a4073fa04dd84702
BLAKE2b-256 4fb5042629700a6bec03b3a693c4dcb15b15087668c5ae5f4142ba8d7b8aee8e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page