Skip to main content

Large-scale sparse linear classification, regression and ranking in Python

Project description

https://github.com/scikit-learn-contrib/lightning/actions/workflows/main.yml/badge.svg?branch=master https://zenodo.org/badge/DOI/10.5281/zenodo.200504.svg

lightning

lightning is a library for large-scale linear classification, regression and ranking in Python.

Highlights:

  • follows the scikit-learn API conventions

  • supports natively both dense and sparse data representations

  • computationally demanding parts implemented in Cython

Solvers supported:

  • primal coordinate descent

  • dual coordinate descent (SDCA, Prox-SDCA)

  • SGD, AdaGrad, SAG, SAGA, SVRG

  • FISTA

Example

Example that shows how to learn a multiclass classifier with group lasso penalty on the News20 dataset (c.f., Blondel et al. 2013):

from sklearn.datasets import fetch_20newsgroups_vectorized
from lightning.classification import CDClassifier

# Load News20 dataset from scikit-learn.
bunch = fetch_20newsgroups_vectorized(subset="all")
X = bunch.data
y = bunch.target

# Set classifier options.
clf = CDClassifier(penalty="l1/l2",
                   loss="squared_hinge",
                   multiclass=True,
                   max_iter=20,
                   alpha=1e-4,
                   C=1.0 / X.shape[0],
                   tol=1e-3)

# Train the model.
clf.fit(X, y)

# Accuracy
print(clf.score(X, y))

# Percentage of selected features
print(clf.n_nonzero(percentage=True))

Dependencies

lightning requires Python >= 3.6, setuptools, Joblib, Numpy >= 1.12, SciPy >= 0.19 and scikit-learn >= 0.19. Building from source also requires Cython and a working C/C++ compiler. To run the tests you will also need pytest.

Installation

Precompiled binaries for the stable version of lightning are available for the main platforms and can be installed using pip:

pip install sklearn-contrib-lightning

or conda:

conda install -c conda-forge sklearn-contrib-lightning

The development version of lightning can be installed from its git repository. In this case it is assumed that you have the git version control system, a working C++ compiler, Cython and the numpy development libraries. In order to install the development version, type:

git clone https://github.com/scikit-learn-contrib/lightning.git
cd lightning
python setup.py install

Documentation

http://contrib.scikit-learn.org/lightning/

On GitHub

https://github.com/scikit-learn-contrib/lightning

Citing

If you use this software, please cite it. Here is a BibTex snippet that you can use:

@misc{lightning_2016,
  author       = {Blondel, Mathieu and
                  Pedregosa, Fabian},
  title        = {{Lightning: large-scale linear classification,
                 regression and ranking in Python}},
  year         = 2016,
  doi          = {10.5281/zenodo.200504},
  url          = {https://doi.org/10.5281/zenodo.200504}
}

Other citing formats are available in its Zenodo entry.

Authors

  • Mathieu Blondel

  • Manoj Kumar

  • Arnaud Rachez

  • Fabian Pedregosa

  • Nikita Titov

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sklearn-contrib-lightning-0.6.1.tar.gz (71.3 kB view details)

Uploaded Source

Built Distributions

sklearn_contrib_lightning-0.6.1-cp39-cp39-win_amd64.whl (642.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

sklearn_contrib_lightning-0.6.1-cp39-cp39-win32.whl (546.9 kB view details)

Uploaded CPython 3.9 Windows x86

sklearn_contrib_lightning-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl (664.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

sklearn_contrib_lightning-0.6.1-cp38-cp38-win_amd64.whl (646.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

sklearn_contrib_lightning-0.6.1-cp38-cp38-win32.whl (550.6 kB view details)

Uploaded CPython 3.8 Windows x86

sklearn_contrib_lightning-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl (653.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

sklearn_contrib_lightning-0.6.1-cp37-cp37m-win_amd64.whl (629.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

sklearn_contrib_lightning-0.6.1-cp37-cp37m-win32.whl (539.6 kB view details)

Uploaded CPython 3.7m Windows x86

sklearn_contrib_lightning-0.6.1-cp37-cp37m-macosx_10_9_x86_64.whl (643.5 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

sklearn_contrib_lightning-0.6.1-cp36-cp36m-win_amd64.whl (627.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

sklearn_contrib_lightning-0.6.1-cp36-cp36m-win32.whl (536.4 kB view details)

Uploaded CPython 3.6m Windows x86

sklearn_contrib_lightning-0.6.1-cp36-cp36m-macosx_10_9_x86_64.whl (638.2 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file sklearn-contrib-lightning-0.6.1.tar.gz.

File metadata

  • Download URL: sklearn-contrib-lightning-0.6.1.tar.gz
  • Upload date:
  • Size: 71.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for sklearn-contrib-lightning-0.6.1.tar.gz
Algorithm Hash digest
SHA256 72579fcf2df9b546997baa5e271f28adf898b5f68c6c6c718bbb53ea15d011c5
MD5 6a025bc5211c191a0b0bafe8e1b06532
BLAKE2b-256 69364cb7ac6c4b193372890cc426c0d4175adea4631b119d4b5e37f9a846f75e

See more details on using hashes here.

File details

Details for the file sklearn_contrib_lightning-0.6.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: sklearn_contrib_lightning-0.6.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 642.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for sklearn_contrib_lightning-0.6.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9aff9cd54ae9a66b815e7a1fdcba4df0ccb948071843dd4e05e4a255292f597f
MD5 e7e08aeeb7638696d34c8dd8bcaa8599
BLAKE2b-256 d3dd345c5c4e84024c20873731e3c076c3e228414fca6e4c8c2c93adeaed3b24

See more details on using hashes here.

File details

Details for the file sklearn_contrib_lightning-0.6.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: sklearn_contrib_lightning-0.6.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 546.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for sklearn_contrib_lightning-0.6.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b670377d5c02da528c4e6527b95947619995f673a749e640bf1b95a74b3fde77
MD5 5e24a29db32fc5fa47ab7799191a7ff0
BLAKE2b-256 59005d64f820bdff538f6e02186c632a9ae89d25fc099d71dc9494988f1ca04e

See more details on using hashes here.

File details

Details for the file sklearn_contrib_lightning-0.6.1-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_contrib_lightning-0.6.1-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c5220da0a09793e32863c38ecd24cb9e9dea363e5693c2dd6139030ebebf787f
MD5 e4d8f7f7ccbfac27bf7ae4124d085cfb
BLAKE2b-256 84f00bf95592bc7d7295ddd294ef370e4a4918ab730f20bc9f4997bce35b5493

See more details on using hashes here.

File details

Details for the file sklearn_contrib_lightning-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: sklearn_contrib_lightning-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 664.9 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for sklearn_contrib_lightning-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 70bebc28a51ceb6211e66fa5d47a9417181d5d98ac0181c45ed2507a7b049b51
MD5 60ed60c3ffa2ca15e5f3fb374aba4ca1
BLAKE2b-256 955608dce4f943749a620e588df3653566df6c609d0c869cd9146567e09a6252

See more details on using hashes here.

File details

Details for the file sklearn_contrib_lightning-0.6.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: sklearn_contrib_lightning-0.6.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 646.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for sklearn_contrib_lightning-0.6.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 59353d4acfd86cd003628e9da255526d52b73e4c18ce869ae85752ee97cb477b
MD5 cd9855645625a8809e7ce0fac427f02a
BLAKE2b-256 877d65d7260bf7ae8d5ac716c63b6abfed50c125efefc2b63e6f9647df1fc9f0

See more details on using hashes here.

File details

Details for the file sklearn_contrib_lightning-0.6.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: sklearn_contrib_lightning-0.6.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 550.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for sklearn_contrib_lightning-0.6.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 98b71e4357b9c8f4844f6c849ab6590462775d083fa3f018caf867386bc970bc
MD5 3c09a19723c606ea9e3c505b981faae0
BLAKE2b-256 a75a34cb5694c4a79332454765cfa7e995d8db47ff377854ea3aa34b4197afaa

See more details on using hashes here.

File details

Details for the file sklearn_contrib_lightning-0.6.1-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_contrib_lightning-0.6.1-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d691a218cd40322c8d9f924f3cd9f831f9a386a0964873181d6b1617f0c14d4f
MD5 fa01a91b872ff646faba078596157a42
BLAKE2b-256 37703522a7c69fce0533ab09c77f2b0d83db4b6e032443db7d93a211774d299f

See more details on using hashes here.

File details

Details for the file sklearn_contrib_lightning-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: sklearn_contrib_lightning-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 653.0 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for sklearn_contrib_lightning-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ce0e61eddf832aa929a46c21f0ad071b4ef1634447445d31f95fc7ab2e9ced0b
MD5 b2bffc1666dc33951e1db34c0a80e26b
BLAKE2b-256 8b6f334ebc9ba7713711e4a0e8b67c9fa88228edd43b6fd32063cf759245dbbe

See more details on using hashes here.

File details

Details for the file sklearn_contrib_lightning-0.6.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: sklearn_contrib_lightning-0.6.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 629.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for sklearn_contrib_lightning-0.6.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 46f5f3404fa521dee3009193d8a26109f2b299ac4b3d575eb644ff743d79c464
MD5 677090b9cbb1aceffc1f16db9064d8ff
BLAKE2b-256 141fc3ba4aa048e9bcfc28460e693079048effa267391f55a65ac3321b5baf7a

See more details on using hashes here.

File details

Details for the file sklearn_contrib_lightning-0.6.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: sklearn_contrib_lightning-0.6.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 539.6 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for sklearn_contrib_lightning-0.6.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 3cec9fb3f495caedf063792e86de2c627aa81428206c9506ee5ebff615ea27e6
MD5 8cb350b85ca13453726547f98cbd7050
BLAKE2b-256 078b338706adae6f879a711d969182727e49e62e91f60ab6dc7f8e30e50d1144

See more details on using hashes here.

File details

Details for the file sklearn_contrib_lightning-0.6.1-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_contrib_lightning-0.6.1-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9f9281822b7ef8b486d4a04bc8b427b4f7a516c8d0ac85aa08d91e82bec2b8eb
MD5 889007c46d263d298f6925c8329925fb
BLAKE2b-256 850fce7cb033816606e59b005e3e2cff03faba8b50a32a08951008b6fb953471

See more details on using hashes here.

File details

Details for the file sklearn_contrib_lightning-0.6.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: sklearn_contrib_lightning-0.6.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 643.5 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for sklearn_contrib_lightning-0.6.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 471776975462c159d610c377f56add4b94220c57e6202d909e8b881e421ff1a8
MD5 8d69649efd4222a01f4a7aa7cb112b66
BLAKE2b-256 4247b51d9527895f3c52e76c5ec1e7c9d193e776d1897061d092b8271c230864

See more details on using hashes here.

File details

Details for the file sklearn_contrib_lightning-0.6.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: sklearn_contrib_lightning-0.6.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 627.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for sklearn_contrib_lightning-0.6.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f7b1e1e171685663a1c7c9a7e29e0e7279f7ddb22ac5b7f97b4969cea1692632
MD5 e3be161699b175138a2148b7af49d588
BLAKE2b-256 3f0df490d9c5124dcfd93ebb10b9bfbe51d6b8af322c602b306e95176ad53b97

See more details on using hashes here.

File details

Details for the file sklearn_contrib_lightning-0.6.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: sklearn_contrib_lightning-0.6.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 536.4 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for sklearn_contrib_lightning-0.6.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 150a9e345a74ec086cccb30c757d4b41a72681df1e00f0c9c496e1df0297d909
MD5 d935c21f2a1c189be78f306e71b2bcc3
BLAKE2b-256 24f41847ea3244235bec4f8a12451b1b96413e1a39a74139eaf06401c75298b2

See more details on using hashes here.

File details

Details for the file sklearn_contrib_lightning-0.6.1-cp36-cp36m-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_contrib_lightning-0.6.1-cp36-cp36m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e8521d7697f2cfa1f07a4855a68a07b17da800ca5bdfe669f93c40f962af9872
MD5 e1c421f8f8deb33430688c2f505f2aeb
BLAKE2b-256 2c1d024f62431d381bfa9902d112d1fda4a4ffe299114ac823acf7d482ce1cab

See more details on using hashes here.

File details

Details for the file sklearn_contrib_lightning-0.6.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: sklearn_contrib_lightning-0.6.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 638.2 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.8.3

File hashes

Hashes for sklearn_contrib_lightning-0.6.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 88e01dc1eff9360c7d6c61cc38f14a6ace2cf88fc618feb248fc5d84c469a928
MD5 3e3755b03a49bc8363d258339c5f007f
BLAKE2b-256 60a1b147195af06dcdbfb9ab721c14446e87cd7d848f0c0b3fe2bd277bc81c7c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page