Supervised learning for probabilistic prediction
Project description
![skpro](/docs/_static/logo/logo.png)
<p align="center">
<a href="https://travis-ci.org/alan-turing-institute/skpro.svg?branch=master"><img src="https://travis-ci.com/alan-turing-institute/skpro.svg?token=bwQYVkNKkUpai7AxgpfV&branch=master" alt="Build Status"></a>
<a href="https://opensource.org/licenses/BSD-3-Clause"><img src="https://img.shields.io/badge/License-BSD%203--Clause-blue.svg" alt="License"></a>
</p>
A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data points.
The package offers a variety of features and specifically allows for
- the implementation of probabilistic prediction strategies in the supervised contexts
- comparison of frequentist and Bayesian prediction methods
- strategy optimization through hyperparamter tuning and ensemble methods (e.g. bagging)
- workflow automation
List of [developers and contributors](AUTHORS.rst)
### Documentation
The full documentation is [available here](https://alan-turing-institute.github.io/skpro/).
### Installation
Installation is easy using Python's package manager
$ pip install skpro
### Contributing
We welcome contributions to the skpro project. Please read our [contribution guide](/CONTRIBUTING.md).
<p align="center">
<a href="https://travis-ci.org/alan-turing-institute/skpro.svg?branch=master"><img src="https://travis-ci.com/alan-turing-institute/skpro.svg?token=bwQYVkNKkUpai7AxgpfV&branch=master" alt="Build Status"></a>
<a href="https://opensource.org/licenses/BSD-3-Clause"><img src="https://img.shields.io/badge/License-BSD%203--Clause-blue.svg" alt="License"></a>
</p>
A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data points.
The package offers a variety of features and specifically allows for
- the implementation of probabilistic prediction strategies in the supervised contexts
- comparison of frequentist and Bayesian prediction methods
- strategy optimization through hyperparamter tuning and ensemble methods (e.g. bagging)
- workflow automation
List of [developers and contributors](AUTHORS.rst)
### Documentation
The full documentation is [available here](https://alan-turing-institute.github.io/skpro/).
### Installation
Installation is easy using Python's package manager
$ pip install skpro
### Contributing
We welcome contributions to the skpro project. Please read our [contribution guide](/CONTRIBUTING.md).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file skpro-1.0.0b1.linux-x86_64.tar.gz
.
File metadata
- Download URL: skpro-1.0.0b1.linux-x86_64.tar.gz
- Upload date:
- Size: 52.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f7398811a9fb7ad8b85594e061bf68395a36c9903bb4161d7a7da2ca45db6d59 |
|
MD5 | 7c1b4d2d24ca1d3b72351f9ae92e9eff |
|
BLAKE2b-256 | 702091af1e96c1d9e0bff77af173363a40380b5d7d79eb5694b1684eba7765de |
File details
Details for the file skpro-1.0.0b1-py2.py3-none-any.whl
.
File metadata
- Download URL: skpro-1.0.0b1-py2.py3-none-any.whl
- Upload date:
- Size: 29.3 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1cc6d21a0b4599ab17588efcf28795d6821218d765a5c4f466c1df324350838d |
|
MD5 | 6100b1b57720a3d513fafa90870f65df |
|
BLAKE2b-256 | 23a285a3e17534a257642a75187f6dd1869bc98a49cc9e5eacbcc632bf17e34b |