Skip to main content

Supervised learning for probabilistic prediction

Project description

![skpro](/docs/_static/logo/logo.png)

<p align="center">
<a href="https://travis-ci.org/alan-turing-institute/skpro.svg?branch=master"><img src="https://travis-ci.com/alan-turing-institute/skpro.svg?token=bwQYVkNKkUpai7AxgpfV&branch=master" alt="Build Status"></a>
<a href="https://opensource.org/licenses/BSD-3-Clause"><img src="https://img.shields.io/badge/License-BSD%203--Clause-blue.svg" alt="License"></a>
</p>

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data points.

The package offers a variety of features and specifically allows for

- the implementation of probabilistic prediction strategies in the supervised contexts
- comparison of frequentist and Bayesian prediction methods
- strategy optimization through hyperparamter tuning and ensemble methods (e.g. bagging)
- workflow automation

List of [developers and contributors](AUTHORS.rst)

### Documentation

The full documentation is [available here](https://alan-turing-institute.github.io/skpro/).

### Installation

Installation is easy using Python's package manager

$ pip install skpro

### Contributing

We welcome contributions to the skpro project. Please read our [contribution guide](/CONTRIBUTING.md).



Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

skpro-1.0.0b1.linux-x86_64.tar.gz (52.2 kB view details)

Uploaded Source

Built Distribution

skpro-1.0.0b1-py2.py3-none-any.whl (29.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file skpro-1.0.0b1.linux-x86_64.tar.gz.

File metadata

File hashes

Hashes for skpro-1.0.0b1.linux-x86_64.tar.gz
Algorithm Hash digest
SHA256 f7398811a9fb7ad8b85594e061bf68395a36c9903bb4161d7a7da2ca45db6d59
MD5 7c1b4d2d24ca1d3b72351f9ae92e9eff
BLAKE2b-256 702091af1e96c1d9e0bff77af173363a40380b5d7d79eb5694b1684eba7765de

See more details on using hashes here.

File details

Details for the file skpro-1.0.0b1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for skpro-1.0.0b1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 1cc6d21a0b4599ab17588efcf28795d6821218d765a5c4f466c1df324350838d
MD5 6100b1b57720a3d513fafa90870f65df
BLAKE2b-256 23a285a3e17534a257642a75187f6dd1869bc98a49cc9e5eacbcc632bf17e34b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page