Skip to main content

Supervised learning for probabilistic prediction

Project description

![skpro](/docs/_static/logo/logo.png)

<p align="center">
<a href="https://badge.fury.io/py/skpro"><img src="https://badge.fury.io/py/skpro.svg" alt="PyPI version" height="18"></a>
<a href="https://travis-ci.org/alan-turing-institute/skpro"><img src="https://travis-ci.org/alan-turing-institute/skpro.svg?branch=master" alt="Build Status"></a>
<a href="https://opensource.org/licenses/BSD-3-Clause"><img src="https://img.shields.io/badge/License-BSD%203--Clause-blue.svg" alt="License"></a>
</p>

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data points.

The package offers a variety of features and specifically allows for

- the implementation of probabilistic prediction strategies in the supervised contexts
- comparison of frequentist and Bayesian prediction methods
- strategy optimization through hyperparamter tuning and ensemble methods (e.g. bagging)
- workflow automation

List of [developers and contributors](AUTHORS.rst)

### Documentation

The full documentation is [available here](https://alan-turing-institute.github.io/skpro/).

### Installation

Installation is easy using Python's package manager

$ pip install skpro

### Contributing & Citation

We welcome contributions to the skpro project. Please read our [contribution guide](/CONTRIBUTING.md).

If you use skpro in a scientific publication, we would appreciate [citations](CITATION.rst).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

skpro-1.0.1.tar.gz (458.8 kB view details)

Uploaded Source

File details

Details for the file skpro-1.0.1.tar.gz.

File metadata

  • Download URL: skpro-1.0.1.tar.gz
  • Upload date:
  • Size: 458.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for skpro-1.0.1.tar.gz
Algorithm Hash digest
SHA256 2350d1befc2f214d5d247434e1553c0a55c90a8e1f7a1311b2150d82d9dfe1e0
MD5 d1ea601020143eecc801dfbf9099a174
BLAKE2b-256 5564716215b33bd1c8df09b9e1b32b5763c7b2410b70691aa39e07123e88b24a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page