Supervised learning for probabilistic prediction
Project description
![skpro](/docs/_static/logo/logo.png)
<p align="center">
<a href="https://badge.fury.io/py/skpro"><img src="https://badge.fury.io/py/skpro.svg" alt="PyPI version" height="18"></a>
<a href="https://travis-ci.org/alan-turing-institute/skpro"><img src="https://travis-ci.org/alan-turing-institute/skpro.svg?branch=master" alt="Build Status"></a>
<a href="https://opensource.org/licenses/BSD-3-Clause"><img src="https://img.shields.io/badge/License-BSD%203--Clause-blue.svg" alt="License"></a>
</p>
A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data points.
The package offers a variety of features and specifically allows for
- the implementation of probabilistic prediction strategies in the supervised contexts
- comparison of frequentist and Bayesian prediction methods
- strategy optimization through hyperparamter tuning and ensemble methods (e.g. bagging)
- workflow automation
List of [developers and contributors](AUTHORS.rst)
### Documentation
The full documentation is [available here](https://alan-turing-institute.github.io/skpro/).
### Installation
Installation is easy using Python's package manager
$ pip install skpro
### Contributing & Citation
We welcome contributions to the skpro project. Please read our [contribution guide](/CONTRIBUTING.md).
If you use skpro in a scientific publication, we would appreciate [citations](CITATION.rst).
<p align="center">
<a href="https://badge.fury.io/py/skpro"><img src="https://badge.fury.io/py/skpro.svg" alt="PyPI version" height="18"></a>
<a href="https://travis-ci.org/alan-turing-institute/skpro"><img src="https://travis-ci.org/alan-turing-institute/skpro.svg?branch=master" alt="Build Status"></a>
<a href="https://opensource.org/licenses/BSD-3-Clause"><img src="https://img.shields.io/badge/License-BSD%203--Clause-blue.svg" alt="License"></a>
</p>
A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data points.
The package offers a variety of features and specifically allows for
- the implementation of probabilistic prediction strategies in the supervised contexts
- comparison of frequentist and Bayesian prediction methods
- strategy optimization through hyperparamter tuning and ensemble methods (e.g. bagging)
- workflow automation
List of [developers and contributors](AUTHORS.rst)
### Documentation
The full documentation is [available here](https://alan-turing-institute.github.io/skpro/).
### Installation
Installation is easy using Python's package manager
$ pip install skpro
### Contributing & Citation
We welcome contributions to the skpro project. Please read our [contribution guide](/CONTRIBUTING.md).
If you use skpro in a scientific publication, we would appreciate [citations](CITATION.rst).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
skpro-1.0.1.tar.gz
(458.8 kB
view details)
File details
Details for the file skpro-1.0.1.tar.gz
.
File metadata
- Download URL: skpro-1.0.1.tar.gz
- Upload date:
- Size: 458.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2350d1befc2f214d5d247434e1553c0a55c90a8e1f7a1311b2150d82d9dfe1e0 |
|
MD5 | d1ea601020143eecc801dfbf9099a174 |
|
BLAKE2b-256 | 5564716215b33bd1c8df09b9e1b32b5763c7b2410b70691aa39e07123e88b24a |