Skip to main content

A unified Python toolbox for machine learning with time series

Project description

A unified framework for machine learning with time series

We provide specialized time series algorithms and scikit-learn compatible tools to build, tune and validate time series models for multiple learning problems, including:

  • Forecasting,

  • Time series classification,

  • Time series regression.

For deep learning, see our companion package: sktime-dl.

CI

github appveyor azure codecov

Docs

readthedocs binder tutorial

Community

contributors gitter discord twitter

Code

pypi conda python codestyle zenodo

Installation

The package is available via PyPI using:

pip install sktime

Alternatively, you can install it via conda:

conda install -c conda-forge sktime

The package is actively being developed and some features may not be stable yet.

Development version

To install the development version, please see our advanced installation instructions.

Quickstart

Forecasting

from sktime.datasets import load_airline
from sktime.forecasting.base import ForecastingHorizon
from sktime.forecasting.model_selection import temporal_train_test_split
from sktime.forecasting.theta import ThetaForecaster
from sktime.performance_metrics.forecasting import smape_loss

y = load_airline()
y_train, y_test = temporal_train_test_split(y)
fh = ForecastingHorizon(y_test.index, is_relative=False)
forecaster = ThetaForecaster(sp=12)  # monthly seasonal periodicity
forecaster.fit(y_train)
y_pred = forecaster.predict(fh)
smape_loss(y_test, y_pred)
>>> 0.08661468139978168

For more, check out the forecasting tutorial.

Time Series Classification

from sktime.classification.interval_based import TimeSeriesForestClassifier
from sktime.datasets import load_arrow_head
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

X, y = load_arrow_head(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y)
classifier = TimeSeriesForestClassifier()
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
accuracy_score(y_test, y_pred)
>>> 0.8679245283018868

For more, check out the time series classification tutorial.

Documentation

How to contribute

We follow the all-contributors specification - and all kinds of contributions are welcome!

If you have a question, chat with us or raise an issue. Your help and feedback is extremely welcome!

Development roadmap

  1. Multivariate/panel forecasting,

  2. Time series clustering,

  3. Time series annotation (segmentation and anomaly detection),

  4. Probabilistic time series modelling, including survival and point processes.

Read our detailed roadmap here.

How to cite sktime

If you use sktime in a scientific publication, we would appreciate citations to the following paper:

Markus Löning, Anthony Bagnall, Sajaysurya Ganesh, Viktor Kazakov, Jason Lines, Franz Király (2019): “sktime: A Unified Interface for Machine Learning with Time Series”

Bibtex entry:

@inproceedings{sktime,
    author = {L{\"{o}}ning, Markus and Bagnall, Anthony and Ganesh, Sajaysurya and Kazakov, Viktor and Lines, Jason and Kir{\'{a}}ly, Franz J},
    booktitle = {Workshop on Systems for ML at NeurIPS 2019},
    title = {{sktime: A Unified Interface for Machine Learning with Time Series}},
    date = {2019},
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sktime-0.6.0.tar.gz (10.7 MB view details)

Uploaded Source

Built Distributions

sktime-0.6.0-cp38-cp38-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

sktime-0.6.0-cp38-cp38-manylinux2014_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.8

sktime-0.6.0-cp38-cp38-manylinux2010_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

sktime-0.6.0-cp38-cp38-macosx_10_15_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

sktime-0.6.0-cp37-cp37m-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

sktime-0.6.0-cp37-cp37m-manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.7m

sktime-0.6.0-cp37-cp37m-manylinux2010_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

sktime-0.6.0-cp37-cp37m-macosx_10_15_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

sktime-0.6.0-cp36-cp36m-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

sktime-0.6.0-cp36-cp36m-manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.6m

sktime-0.6.0-cp36-cp36m-manylinux2010_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

sktime-0.6.0-cp36-cp36m-macosx_10_15_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.6m macOS 10.15+ x86-64

File details

Details for the file sktime-0.6.0.tar.gz.

File metadata

  • Download URL: sktime-0.6.0.tar.gz
  • Upload date:
  • Size: 10.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.6.13

File hashes

Hashes for sktime-0.6.0.tar.gz
Algorithm Hash digest
SHA256 818dc3510dd2f57b85433e8733ca35f0fcb7bd354503104c9474a1e95284a8ca
MD5 e76f04d8b6e44bbb56060c1c0c20cae8
BLAKE2b-256 74a9d59f16ac5bfcc532a6a4810fece18ee89b934a270c4aa8b166393dc3d9d6

See more details on using hashes here.

File details

Details for the file sktime-0.6.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: sktime-0.6.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.8

File hashes

Hashes for sktime-0.6.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8bae174b809ac8c7034279b50bfe41ee6da6ebd528dc89fb208c44ffccbc309a
MD5 f30e0aae7192aa59d8cac4140b94805d
BLAKE2b-256 ea252b50b082246eb04505f62d40a3657328d1269b239690a4409b5160a3c088

See more details on using hashes here.

File details

Details for the file sktime-0.6.0-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

  • Download URL: sktime-0.6.0-cp38-cp38-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 5.8 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for sktime-0.6.0-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 16336b7920e92637ede8903c76fcdfc0ed8a356b07deed89f394ba9df98aa03f
MD5 616c7c37bfe3c5cf154fa323c484426c
BLAKE2b-256 8e0e4ed7d14b8e2a1ec624b3b64359d434b9e976850ee269f0c396e9ab2df6da

See more details on using hashes here.

File details

Details for the file sktime-0.6.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: sktime-0.6.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 5.7 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for sktime-0.6.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f4a12a6466f02f86b4f06781c1a1e1c47ee4e8a6f69cd85e851b3b97bd0988ee
MD5 fc8b7165379d0064fac1d348b359352d
BLAKE2b-256 1ce85dc33d90aad2041ceb95543488fd13ca57bb5e0b3b574a4bffdbb122172f

See more details on using hashes here.

File details

Details for the file sktime-0.6.0-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: sktime-0.6.0-cp38-cp38-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.8, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for sktime-0.6.0-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 20cb6f04f7cb31d3a2c15c8213691eaef8a26e1ec3ac2a487aa75b531286e811
MD5 0904e227f74beef5159bab73fda4b288
BLAKE2b-256 09e73b889b4cf56d628de25b0260d6ffd24d4b3dee74c41beffbe801e4d4314b

See more details on using hashes here.

File details

Details for the file sktime-0.6.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: sktime-0.6.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for sktime-0.6.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a1be4177023d248fe00b7bb17d2e95bce63e6f9a78748dd5bb04d52b271838b6
MD5 55f1a33d06fc9697de0b139c7a4a33e4
BLAKE2b-256 1b1591c8bbad48fed448e9b538223689ab1356609decac60ff966e63f8543536

See more details on using hashes here.

File details

Details for the file sktime-0.6.0-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: sktime-0.6.0-cp37-cp37m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 5.7 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for sktime-0.6.0-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 edb3f7ac5b084cb192671ba426711bed59e41236563b39d8261e4e00e24387e4
MD5 b0f717b3d6b28916708271dd650b00b6
BLAKE2b-256 ed0bee4c2a9f2ef22eea4e202c4740142f3dfb8a3e5f9f1b36731b39b58ca432

See more details on using hashes here.

File details

Details for the file sktime-0.6.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: sktime-0.6.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 5.6 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for sktime-0.6.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b1d6f7bec02ee6a4c7f60441f10dd518eb9bf2a2324a07a1d690eec6ea6f4e01
MD5 21470511a2b035f77071bf5dce19dace
BLAKE2b-256 ba8341252e7b8440837726f5927abac0c8e98fbf3e6fdac3cc592c150c9d5f28

See more details on using hashes here.

File details

Details for the file sktime-0.6.0-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: sktime-0.6.0-cp37-cp37m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for sktime-0.6.0-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ca37f2f44343d93e1ebe4c13a22c421367895777cb24cc314b19e81007972637
MD5 89868ecee4d979decaae302f62cfb8a8
BLAKE2b-256 ee8340546b03fa833e2e83b7a0c3c29ba5e57fbcd3c8a472c5fda8042aa46388

See more details on using hashes here.

File details

Details for the file sktime-0.6.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: sktime-0.6.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.6.13

File hashes

Hashes for sktime-0.6.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 3c21d3991c8ae3276526f515efc55a7ddaf6fe5c201394e1d61a3a2bb97035e5
MD5 47e18909bf05ed7357d5c43b7cb67eb9
BLAKE2b-256 466d6a6c77572e35b0fa32047b051b817cbf6ce9e66fd99dafa47b7556b74137

See more details on using hashes here.

File details

Details for the file sktime-0.6.0-cp36-cp36m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: sktime-0.6.0-cp36-cp36m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 5.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for sktime-0.6.0-cp36-cp36m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b4a157b9710534400befc9d504d9d28df69466e158798525ee4461d22a11ed6f
MD5 d06b1cc1d4ffb033c2ebeb446c184f21
BLAKE2b-256 caf87a49369ee61c124c0e0c0356908964d8a11c973ed15999d1238288db7d28

See more details on using hashes here.

File details

Details for the file sktime-0.6.0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: sktime-0.6.0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 5.6 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for sktime-0.6.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4fb0f7b8b4201e5c7e2964e459a598e4ae6b6c839decf771c1270d8d1344f4be
MD5 5f311fa8fd13814e8d8458c79ece4557
BLAKE2b-256 17f5336efe56795555b8efe2fc00f8485007b30bbd161fc5f7f4d0cc2794f700

See more details on using hashes here.

File details

Details for the file sktime-0.6.0-cp36-cp36m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: sktime-0.6.0-cp36-cp36m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.6m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.6.13

File hashes

Hashes for sktime-0.6.0-cp36-cp36m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 41ca24269dba7e37900bc18801e1906c63cf7bf23cedfeaa404e6e86fc9cfb18
MD5 09e7197b3870bb0c754c25193cf7179d
BLAKE2b-256 13d2b6e1542e85cf80d40d59f86a1f19c99e18db7ce764d5940c851fefc1385e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page