Skip to main content

A unified Python toolbox for machine learning with time series

Project description

A unified framework for machine learning with time series

We provide specialized time series algorithms and scikit-learn compatible tools to build, tune and validate time series models for multiple learning problems, including:

  • Forecasting,

  • Time series classification,

  • Time series regression.

For deep learning, see our companion package: sktime-dl.

CI

github appveyor azure codecov

Docs

readthedocs binder tutorial

Community

contributors gitter discord twitter

Code

pypi conda python codestyle zenodo

Installation

The package is available via PyPI using:

pip install sktime

Alternatively, you can install it via conda:

conda install -c conda-forge sktime

The package is actively being developed and some features may not be stable yet.

Development version

To install the development version, please see our advanced installation instructions.

Quickstart

Forecasting

from sktime.datasets import load_airline
from sktime.forecasting.base import ForecastingHorizon
from sktime.forecasting.model_selection import temporal_train_test_split
from sktime.forecasting.theta import ThetaForecaster
from sktime.performance_metrics.forecasting import mean_absolute_percentage_error

y = load_airline()
y_train, y_test = temporal_train_test_split(y)
fh = ForecastingHorizon(y_test.index, is_relative=False)
forecaster = ThetaForecaster(sp=12)  # monthly seasonal periodicity
forecaster.fit(y_train)
y_pred = forecaster.predict(fh)
mean_absolute_percentage_error(y_test, y_pred)
>>> 0.08661467738190656

For more, check out the forecasting tutorial.

Time Series Classification

from sktime.classification.interval_based import TimeSeriesForestClassifier
from sktime.datasets import load_arrow_head
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

X, y = load_arrow_head(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y)
classifier = TimeSeriesForestClassifier()
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
accuracy_score(y_test, y_pred)
>>> 0.8679245283018868

For more, check out the time series classification tutorial.

Documentation

How to contribute

We follow the all-contributors specification - and all kinds of contributions are welcome!

If you have a question, chat with us or raise an issue. Your help and feedback is extremely welcome!

Development roadmap

  1. Multivariate/panel forecasting,

  2. Time series clustering,

  3. Time series annotation (segmentation and anomaly detection),

  4. Probabilistic time series modelling, including survival and point processes.

Read our detailed roadmap here.

How to cite sktime

If you use sktime in a scientific publication, we would appreciate citations to the following paper:

Markus Löning, Anthony Bagnall, Sajaysurya Ganesh, Viktor Kazakov, Jason Lines, Franz Király (2019): “sktime: A Unified Interface for Machine Learning with Time Series”

Bibtex entry:

@inproceedings{sktime,
    author = {L{\"{o}}ning, Markus and Bagnall, Anthony and Ganesh, Sajaysurya and Kazakov, Viktor and Lines, Jason and Kir{\'{a}}ly, Franz J},
    booktitle = {Workshop on Systems for ML at NeurIPS 2019},
    title = {{sktime: A Unified Interface for Machine Learning with Time Series}},
    date = {2019},
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sktime-0.6.1.tar.gz (10.7 MB view details)

Uploaded Source

Built Distributions

sktime-0.6.1-cp38-cp38-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

sktime-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

sktime-0.6.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

sktime-0.6.1-cp38-cp38-macosx_10_15_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

sktime-0.6.1-cp37-cp37m-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

sktime-0.6.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

sktime-0.6.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

sktime-0.6.1-cp37-cp37m-macosx_10_15_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

sktime-0.6.1-cp36-cp36m-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

sktime-0.6.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

sktime-0.6.1-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

sktime-0.6.1-cp36-cp36m-macosx_10_15_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.6m macOS 10.15+ x86-64

File details

Details for the file sktime-0.6.1.tar.gz.

File metadata

  • Download URL: sktime-0.6.1.tar.gz
  • Upload date:
  • Size: 10.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for sktime-0.6.1.tar.gz
Algorithm Hash digest
SHA256 9814713f608eaed894aad144733aebe1f4fcba467c31d6a73a1bb4e1b4254dac
MD5 b96067fe2f78410855696c58acf9550e
BLAKE2b-256 d85c51af7e78068e33c3e5a7bf5c2c860fb8ec98666681ebcef19f2f56c9d45e

See more details on using hashes here.

File details

Details for the file sktime-0.6.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: sktime-0.6.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.8

File hashes

Hashes for sktime-0.6.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f9b87c108bb3cb060c547b3f171fc586751011a44e788178d96592ef3297487a
MD5 93b026b8f0d493115cd79059d112e12a
BLAKE2b-256 1fced0be87ed65e1f685059987c9bc66d9bbf019331aab717503c8ee933a5741

See more details on using hashes here.

File details

Details for the file sktime-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sktime-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a67524c1630dc51465f0bb45e37174d0ae291ce864f5e7288253208b458c0f91
MD5 ce2b633e15a9cf6ad4de959355f91ba7
BLAKE2b-256 81f0280fe88309ffac9cc8bb66265c80c6184d101b858117b37f56ab27e2da07

See more details on using hashes here.

File details

Details for the file sktime-0.6.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for sktime-0.6.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d8abe3537317d7ff404eb500add387b1c452c6c2f62044b797593269ddeb464e
MD5 39f44361a1e9db552d3a273d03c9b52f
BLAKE2b-256 0f730586487240361464d3696c80148456cff9867937c04f6f476e26c97b4ad3

See more details on using hashes here.

File details

Details for the file sktime-0.6.1-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: sktime-0.6.1-cp38-cp38-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.8, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.10

File hashes

Hashes for sktime-0.6.1-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e005e6d8f59a0bc16c264be853969efcfdb21d43da90302386d57c7e8bfd4661
MD5 6516b18d207ef2839b8d4dfbf825c2f7
BLAKE2b-256 8806904b416ddcd2e494cd49b36c2ffbbeeffbce8e26df96141fd7f3894ae88d

See more details on using hashes here.

File details

Details for the file sktime-0.6.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: sktime-0.6.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for sktime-0.6.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 13ff486b4647c332dbf4918f0e2e4dda43afea989bed73d5a2da65ebb660423d
MD5 49deacde2bbf91c2279e9bbcb65e09be
BLAKE2b-256 a607cbc59acef673c55dfb261115186db005b0447eefac27f69a23ae2f07583c

See more details on using hashes here.

File details

Details for the file sktime-0.6.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sktime-0.6.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 efa740a3207d20ebde8fd67247a529393e27652810fbfd8950bb53d5d45f6a9a
MD5 0c3c05ec85f564707aa80f54f4e89e6b
BLAKE2b-256 be471cdd9342586b1695397bc72b8602cac2f9af7a49e1b51ddb5452d23d99c9

See more details on using hashes here.

File details

Details for the file sktime-0.6.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for sktime-0.6.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2509e7795a0e38db4786c279fec05bf0d0e7ab8919c9899785a163e0a051aec2
MD5 fc90ddd5cea189a8d6d810636c5a5209
BLAKE2b-256 8672f0359ce760fe625e4e795667348f3f89ed8dfd3cf2b0d633ca29b0b7fd9d

See more details on using hashes here.

File details

Details for the file sktime-0.6.1-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: sktime-0.6.1-cp37-cp37m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for sktime-0.6.1-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 00819fd78a24d3f8278f9c1e6995cf541dd062f16d788933137c242a53038eb5
MD5 ddf10d0a7329c65e348a028400f17c02
BLAKE2b-256 ad7bbbacd9d9f761b1e106a42cb76d29997f4493536ec1131c682797eb2468e0

See more details on using hashes here.

File details

Details for the file sktime-0.6.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: sktime-0.6.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.6.13

File hashes

Hashes for sktime-0.6.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a026fac9cf5815c0e7689fa9d63ba73197c4421562a1fe2b519f3df58c6104ba
MD5 c72b1ec3d333717440102312f5b29088
BLAKE2b-256 a526ea89b38156226fce7a70278e92820c4af7052476830501d6845863e315e7

See more details on using hashes here.

File details

Details for the file sktime-0.6.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sktime-0.6.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6e043ffeb04fdd26d2e8733922604eb1631d115b56ff1e0fa4918304e309f8ac
MD5 8e37b1e75939f6079d64a2e11c66f876
BLAKE2b-256 2ea3782eb6e1ef61227626004c0403796d9a92177439df88601ec780f43a4c4e

See more details on using hashes here.

File details

Details for the file sktime-0.6.1-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for sktime-0.6.1-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8306cad3dd4e7000b529d394a7b6bd3be55b6a532a55d5a9a58f9c6f20c2ea66
MD5 d6db116a6ba9587de637be250c961278
BLAKE2b-256 2531571e20121220312f48f8e9f786c56c18f2264b4ed4fa9a7fd43233d3f16e

See more details on using hashes here.

File details

Details for the file sktime-0.6.1-cp36-cp36m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: sktime-0.6.1-cp36-cp36m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.6m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.6.13

File hashes

Hashes for sktime-0.6.1-cp36-cp36m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 607aaf1e9cf818fe5b797a03e80557c9dbb13d085d6bae7e63d01c07e4b4fae9
MD5 54945d1a671288dfae5dc5d1a510673b
BLAKE2b-256 095d7d5d83e54308a523a750afa93782ce087b239ac688b7075ebf08ead7b7f2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page