Skip to main content

A unified Python toolbox for machine learning with time series

Project description

Welcome to sktime

A unified interface for machine learning with time series

:rocket: Version 0.8.0 out now! Check out the release notes here.

sktime is a library for time series analysis in Python. It provides a unified interface for multiple time series learning tasks. Currently, this includes time series classification, regression, clustering, annotation and forecasting. It comes with time series algorithms and scikit-learn compatible tools to build, tune and validate time series models.

Overview
CI/CD github-actions !appveyor !azure-devops !codecov readthedocs
Code !pypi !conda !python-versions !black Binder
Community !slack !discord !gitter !twitter !youtube
Citation !zenodo

:books: Documentation

Documentation
:star: Tutorials New to sktime? Here's everything you need to know!
:clipboard: Binder Notebooks Example notebooks to play with in your browser.
:woman_technologist: User Guides How to use sktime and its features.
:scissors: Extension Templates How to build your own estimator using sktime's API.
:control_knobs: API Reference The detailed reference for sktime's API.
:tv: Video Tutorial Our video tutorial from the 2020 PyData Festival.
:hammer_and_wrench: Changelog Changes and version history.
:deciduous_tree: Roadmap sktime's software and community development plan.
:pencil: Related Software A list of related software.

:speech_balloon: Where to ask questions

Questions and feedback are extremely welcome! Please understand that we won't be able to provide individual support via email. We also believe that help is much more valuable if it's shared publicly, so that more people can benefit from it.

Type Platforms
:bug: Bug Reports GitHub Issue Tracker
:sparkles: Feature Requests & Ideas GitHub Issue Tracker
:woman_technologist: Usage Questions GitHub Discussions · Stack Overflow
:speech_balloon: General Discussion GitHub Discussions · Gitter · Discord

:dizzy: Features

Our aim is to make the time series analysis ecosystem more interoperable and usable as a whole. sktime provides a unified interface for distinct but related time series learning tasks. It features dedicated time series algorithms and tools for composite model building including pipelining, ensembling, tuning and reduction that enables users to apply an algorithm for one task to another.

sktime also provides interfaces to related libraries, for example scikit-learn, statsmodels, tsfresh, PyOD and fbprophet, among others.

For deep learning, see our companion package: sktime-dl.

Module Status Links
Forecasting stable Tutorial · API Reference · Extension Template
Time Series Classification stable Tutorial · API Reference · Extension Template
Time Series Regression stable API Reference
Transformations maturing API Reference
Time Series Clustering experimental Extension Template
Time Series Distances/Kernels experimental Extension Template
Annotation experimental Extension Template

:hourglass_flowing_sand: Install sktime

For trouble shooting and detailed installation instructions, see the documentation.

  • Operating system: macOS X · Linux · Windows 8.1 or higher
  • Python version: Python 3.6, 3.7 and 3.8 (only 64 bit)
  • Package managers: pip · conda (via conda-forge)

pip

Using pip, sktime releases are available as source packages and binary wheels. You can see all available wheels here.

pip install sktime

or, with maximum dependencies,

pip install sktime[all_extras]

conda

You can also install sktime from conda via the conda-forge channel. For the feedstock including the build recipe and configuration, check out this repository.

conda install -c conda-forge sktime

or, with maximum dependencies,

conda install -c conda-forge sktime-all-extras

:zap: Quickstart

Forecasting

from sktime.datasets import load_airline
from sktime.forecasting.base import ForecastingHorizon
from sktime.forecasting.model_selection import temporal_train_test_split
from sktime.forecasting.theta import ThetaForecaster
from sktime.performance_metrics.forecasting import mean_absolute_percentage_error

y = load_airline()
y_train, y_test = temporal_train_test_split(y)
fh = ForecastingHorizon(y_test.index, is_relative=False)
forecaster = ThetaForecaster(sp=12)  # monthly seasonal periodicity
forecaster.fit(y_train)
y_pred = forecaster.predict(fh)
mean_absolute_percentage_error(y_test, y_pred)
>>> 0.08661467738190656

Time Series Classification

from sktime.classification.interval_based import TimeSeriesForestClassifier
from sktime.datasets import load_arrow_head
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

X, y = load_arrow_head(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y)
classifier = TimeSeriesForestClassifier()
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
accuracy_score(y_test, y_pred)
>>> 0.8679245283018868

:wave: How to get involved

There are many ways to join the sktime community. We follow the all-contributors specification: all kinds of contributions are welcome - not just code.

Documentation
:gift_heart: Contribute How to contribute to sktime.
:school_satchel: Mentoring New to open source? Apply to our mentoring program!
:date: Meetings Join our discussions, tutorials, workshops and sprints!
:woman_mechanic: Developer Guides How to further develop sktime's code base.
:construction: Enhancement Proposals Design a new feature for sktime.
:medal_sports: Contributors A list of all contributors.
:raising_hand: Roles An overview of our core community roles.
:money_with_wings: Donate Fund sktime maintenance and development.
:classical_building: Governance How and by whom decisions are made in sktime's community.

:bulb: Project vision

  • by the community, for the community -- developed by a friendly and collaborative community.
  • the right tool for the right task -- helping users to diagnose their learning problem and suitable scientific model types.
  • embedded in state-of-art ecosystems and provider of interoperable interfaces -- interoperable with scikit-learn, statsmodels, tsfresh, and other community favourites.
  • rich model composition and reduction functionality -- build tuning and feature extraction pipelines, solve forecasting tasks with scikit-learn regressors.
  • clean, descriptive specification syntax -- based on modern object-oriented design principles for data science.
  • fair model assessment and benchmarking -- build your models, inspect your models, check your models, avoid pitfalls.
  • easily extensible -- easy extension templates to add your own algorithms compatible with sktime's API.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sktime-0.8.0.tar.gz (9.7 MB view details)

Uploaded Source

Built Distributions

sktime-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

sktime-0.8.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

sktime-0.8.0-cp39-cp39-macosx_10_15_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

sktime-0.8.0-cp38-cp38-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

sktime-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

sktime-0.8.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

sktime-0.8.0-cp38-cp38-macosx_10_15_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

sktime-0.8.0-cp37-cp37m-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

sktime-0.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

sktime-0.8.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

sktime-0.8.0-cp37-cp37m-macosx_10_15_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

sktime-0.8.0-cp36-cp36m-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

sktime-0.8.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

sktime-0.8.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

sktime-0.8.0-cp36-cp36m-macosx_10_15_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.6m macOS 10.15+ x86-64

File details

Details for the file sktime-0.8.0.tar.gz.

File metadata

  • Download URL: sktime-0.8.0.tar.gz
  • Upload date:
  • Size: 9.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.12

File hashes

Hashes for sktime-0.8.0.tar.gz
Algorithm Hash digest
SHA256 8970f2d4f2eb54c0181b05f5714d198a0fa95c127252475e5216a702347cd881
MD5 36c76caca8ad2e208fc28a89b2e0c656
BLAKE2b-256 4f62c661fd6b344f426326f0ac43cf12f7e95845d638be43a2401cfeb4058a46

See more details on using hashes here.

File details

Details for the file sktime-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sktime-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9f5418f1c1d1d7b0d32ba03890d9ed67f7416be17cb575894bbf6faca6d09af1
MD5 901190e82c97abf04d802564cf2e5e3e
BLAKE2b-256 615f9f651df2c13362fbf495c3831ddc533c318e362991ecf9d4864533cb1a74

See more details on using hashes here.

File details

Details for the file sktime-0.8.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for sktime-0.8.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f35ab884a456ce7eea61d0bd20527cf389ab7b1ae7c04ebad9b9025b8fee02ae
MD5 3068682c9ac930fc32640b8e2352db17
BLAKE2b-256 b405e3bc59b3f566265169562dee5c8c231ce75b52b8d357c309f120594a49ff

See more details on using hashes here.

File details

Details for the file sktime-0.8.0-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: sktime-0.8.0-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for sktime-0.8.0-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 dc17e38eeb5d00361b42386c781ed56441134f859c120a4e4b1b030f87ae00d8
MD5 40a3ebda38c08654712c07940050843b
BLAKE2b-256 3adabcad1865e952d9a570cca04898e94a094d92355c30b1327faefda2bf487a

See more details on using hashes here.

File details

Details for the file sktime-0.8.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: sktime-0.8.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.8.10

File hashes

Hashes for sktime-0.8.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6debacac87cf4ce6a89691c16e8a93c6dd22bfe42ef9156bf1869f2bc84acc4e
MD5 eb49035542147cb551ce11747919bec2
BLAKE2b-256 09c9a6de56933d1ccbd47111b7dcd0e0eec53e88b899813aaa5b0be80f263ece

See more details on using hashes here.

File details

Details for the file sktime-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sktime-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c0c99eebfccdd8ec603ecfc61aac4d9dca3e1d307b82920de2a5bcd3cf8453b4
MD5 c4459dba7c00fdedcc2218c982099755
BLAKE2b-256 135b0ec91f26aea7c6b2ac43afe317859c6e4a2428345398c2a972fdebc1f9ad

See more details on using hashes here.

File details

Details for the file sktime-0.8.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for sktime-0.8.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 396216ea7fb63c5c611c38f140212a9d4976608bd55f8bbccd78ba5df7e70727
MD5 4f1deb4d5d193b2a8eb8e9f52b0b7564
BLAKE2b-256 cf41abc3bd46edf02fada485e73e09ad2b931b2afefcf65fad817c187a05e436

See more details on using hashes here.

File details

Details for the file sktime-0.8.0-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: sktime-0.8.0-cp38-cp38-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.8, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.8.12

File hashes

Hashes for sktime-0.8.0-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 25ad30cd6c6167ddb9dee90114df7ecb8b4518a9df9e2eaa83580c79930ac037
MD5 f631b50c4efae3186d3a5bca231291ee
BLAKE2b-256 d4aa8b5f76d2d0a67b323fba4dca98d7bfcf8e13c428ecb394eacaafa271afe3

See more details on using hashes here.

File details

Details for the file sktime-0.8.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: sktime-0.8.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.11

File hashes

Hashes for sktime-0.8.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6570ad33794dbb49ec78f891e51195d48b45091d2776072def4c995e0e3b5603
MD5 dab444d982578e2e3100cb7e5961d4e1
BLAKE2b-256 8463e9ca5d3f4fe8c076fb978566e5bfa9c796e96b5431724ed6cd1116823218

See more details on using hashes here.

File details

Details for the file sktime-0.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sktime-0.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 764dc1254b75e4f42907320eb67e75d734e973704f70bf508748cbeb59ba6b14
MD5 1eb602c06843215e4df55dc3fb7b4659
BLAKE2b-256 8a609467e3e57afe7d7ba3c31b13499c24be0eac57bdcf994e8df9cfa044270b

See more details on using hashes here.

File details

Details for the file sktime-0.8.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for sktime-0.8.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2df1185e045c9927e0deaa7ec7e6e56012df999ce9e382162a12f39d569a020e
MD5 7c511319b5f31f1a380af340461f3231
BLAKE2b-256 cf062410d1391549f84b8040b80ae604fe79ef255c7b08feabd869613ee08b03

See more details on using hashes here.

File details

Details for the file sktime-0.8.0-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: sktime-0.8.0-cp37-cp37m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.12

File hashes

Hashes for sktime-0.8.0-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 bb9c97b9f77f140ccf495f412068e842193091e9ac0122e21aca709c02325e3d
MD5 029b196ee9c780921a908b8f00063bc6
BLAKE2b-256 6441597aaff4ee8978af6ad7a54b6624a7d9b89127efe7fd5a70902ef12debc6

See more details on using hashes here.

File details

Details for the file sktime-0.8.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: sktime-0.8.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.6.13

File hashes

Hashes for sktime-0.8.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 15a629df60f7512c37e5f7391e19039a3bcf75fd6dc96ec6b158ff453fa7ca0d
MD5 321a47cb4a73f0e8193b863deb288739
BLAKE2b-256 1f8411fa5eb275824f9db072bb28921b545f4a1c8aeaf43732dc87c11f64c8a4

See more details on using hashes here.

File details

Details for the file sktime-0.8.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sktime-0.8.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 91fad9b80eb5d986226265594961a8198f67cf05e2a7e75f2e790458cef400ef
MD5 ed1fc4d228bd737fce060d87af26ec5e
BLAKE2b-256 1db522bfc38a124e428a7298c9a7a2d98c5ccb707dee496bd66388be0b96bcb5

See more details on using hashes here.

File details

Details for the file sktime-0.8.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for sktime-0.8.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8c7e27ea93bfcbf90b0d813ed5ec992649624936af2853045eb0bffc0eb5522f
MD5 ddea04662b2479f3d5fd0a94dcb6c7dc
BLAKE2b-256 bed368a1efefd88c1377b4242d77885053137a23ffc02d48c607ca1e30b5151a

See more details on using hashes here.

File details

Details for the file sktime-0.8.0-cp36-cp36m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: sktime-0.8.0-cp36-cp36m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.6m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.6.15

File hashes

Hashes for sktime-0.8.0-cp36-cp36m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 60f066de8a54318f29a5fb9b19ca8e73d67c69529c0fb318cfae9357a6c21247
MD5 5de52e42474088ee2756ef4f485437e3
BLAKE2b-256 db17c4b434465c3d96b4cf54237cbc5a28ef3daaef71fb468f25062784b088c1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page