Skip to main content

A toolbox for sleep stage classification using ECG data

Project description

Py Version PyPI Version Docs

SleepECG

SleepECG provides tools for sleep stage classification when EEG signals are not available. Based only on ECG (and to a lesser extent also movement data), SleepECG provides a functions for

  • downloading and reading open polysomnography datasets (TODO),
  • detecting heartbeats from ECG signals, and
  • classifying sleep stages (which includes the complete preprocessing, feature extraction, and classification pipeline) (TODO).

Installation

SleepECG is available on PyPI and can be installed with pip:

pip install sleepecg

Heartbeat detection

ECG-based sleep staging heavily relies on heartrate variability. Therefore, a reliable and efficient heartbeat detector is essential. SleepECG provides a detector based on the approach described by Pan & Tompkins (1985). We outsourced performance-critical code to a C extension, which makes the detector substantially faster than other implementations. However, we also provide Numba and pure Python backends (the Numba backend is almost as fast whereas the pure Python implementation is much slower).

Usage

The function detect_heartbeats() finds heartbeats in an unfiltered ECG signal ecg with sampling frequency fs (in Hz). It returns the indices of all detected heartbeats. A complete example including visualization and performance evaluation is available in examples/heartbeat_detection.py.

from sleepecg import detect_heartbeats

detection = detect_heartbeats(ecg, fs)

Performance evaluation

We evaluated detector runtime using slices of different lengths from LTDB records with at least 20 hours duration. Error bars in the plot below correspond to the standard error of the mean. Our detector (we only show the C backend) is by far the fastest implementation among all tested packages (note that the y-axis is logarithmically scaled).

LTDB runtimes

We also evaluated detection performance on all MITDB records. We defined a successful detection if it was within 100ms (i.e. 36 samples) of the corresponding annotation (using a tolerance here is necessary because annotations usually do not coincide with the exact R peak locations). In terms of recall, precision, and F1 score, our detector is among the best heartbeat detectors available.

MITDB metrics

For analysis of heartrate variability, detecting the exact location of heartbeats is essential. As a measure of how accurate a detector is, we computed Pearson's correlation coefficient between resampled RRI time series deduced from annotated and detected beat locations from all GUDB records. Our implementation detects peaks in the bandpass-filtered ECG signal, so it produces stable RRI time series without any post-processing.

GUDB pearson correlation

We used the following detectors for our benchmarks:

# mne
import mne  # https://pypi-hypernode.com/project/mne/
detection = mne.preprocessing.ecg.qrs_detector(fs, ecg, verbose=False)

# wfdb_xqrs
import wfdb.processing  # https://pypi-hypernode.com/project/wfdb/
detection = wfdb.processing.xqrs_detect(ecg, fs, verbose=False)

# pyecg_pan_tompkins
import ecgdetectors  # https://pypi-hypernode.com/project/py-ecg-detectors/
detection = ecgdetectors.Detectors(fs).pan_tompkins_detector(ecg)

# biosppy_hamilton
import biosppy  # https://pypi-hypernode.com/project/biosppy/
detection = biosppy.signals.ecg.hamilton_segmenter(ecg, fs)[0]

# heartpy
import heartpy  # https://pypi-hypernode.com/project/heartpy/
wd, m = heartpy.process(ecg, fs)
detection = np.array(wd['peaklist'])[wd['binary_peaklist'].astype(bool)]

# neurokit2_nk
import neurokit2  # https://pypi-hypernode.com/project/neurokit2/
clean_ecg = neurokit2.ecg.ecg_clean(ecg, int(fs), method='neurokit')
detection = neurokit2.ecg.ecg_findpeaks(clean_ecg, int(fs), method='neurokit')['ECG_R_Peaks']

# neurokit2_kalidas2017
import neurokit2  # https://pypi-hypernode.com/project/neurokit2/
clean_ecg = neurokit2.ecg.ecg_clean(ecg, int(fs), method='kalidas2017')
detection = neurokit2.ecg.ecg_findpeaks(clean_ecg, int(fs), method='kalidas2017')['ECG_R_Peaks']

# sleepecg
import sleepecg  # https://pypi-hypernode.com/project/sleepecg/
detection = sleepecg.heartbeat_detection.detect_heartbeats(ecg, fs)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sleepecg-0.2.0.tar.gz (21.2 kB view details)

Uploaded Source

Built Distributions

sleepecg-0.2.0-cp39-cp39-win_amd64.whl (34.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

sleepecg-0.2.0-cp39-cp39-win32.whl (33.6 kB view details)

Uploaded CPython 3.9 Windows x86

sleepecg-0.2.0-cp39-cp39-manylinux2014_x86_64.whl (51.1 kB view details)

Uploaded CPython 3.9

sleepecg-0.2.0-cp39-cp39-manylinux2014_i686.whl (50.8 kB view details)

Uploaded CPython 3.9

sleepecg-0.2.0-cp39-cp39-manylinux1_x86_64.whl (51.1 kB view details)

Uploaded CPython 3.9

sleepecg-0.2.0-cp39-cp39-manylinux1_i686.whl (50.8 kB view details)

Uploaded CPython 3.9

sleepecg-0.2.0-cp39-cp39-macosx_11_0_arm64.whl (30.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

sleepecg-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl (30.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

sleepecg-0.2.0-cp38-cp38-win_amd64.whl (34.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

sleepecg-0.2.0-cp38-cp38-win32.whl (33.6 kB view details)

Uploaded CPython 3.8 Windows x86

sleepecg-0.2.0-cp38-cp38-manylinux2014_x86_64.whl (51.4 kB view details)

Uploaded CPython 3.8

sleepecg-0.2.0-cp38-cp38-manylinux2014_i686.whl (51.1 kB view details)

Uploaded CPython 3.8

sleepecg-0.2.0-cp38-cp38-manylinux1_x86_64.whl (51.4 kB view details)

Uploaded CPython 3.8

sleepecg-0.2.0-cp38-cp38-manylinux1_i686.whl (51.1 kB view details)

Uploaded CPython 3.8

sleepecg-0.2.0-cp38-cp38-macosx_11_0_arm64.whl (30.6 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

sleepecg-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl (30.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

sleepecg-0.2.0-cp37-cp37m-win_amd64.whl (34.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

sleepecg-0.2.0-cp37-cp37m-win32.whl (33.5 kB view details)

Uploaded CPython 3.7m Windows x86

sleepecg-0.2.0-cp37-cp37m-manylinux2014_x86_64.whl (52.0 kB view details)

Uploaded CPython 3.7m

sleepecg-0.2.0-cp37-cp37m-manylinux2014_i686.whl (51.8 kB view details)

Uploaded CPython 3.7m

sleepecg-0.2.0-cp37-cp37m-manylinux1_x86_64.whl (52.0 kB view details)

Uploaded CPython 3.7m

sleepecg-0.2.0-cp37-cp37m-manylinux1_i686.whl (51.8 kB view details)

Uploaded CPython 3.7m

sleepecg-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl (30.4 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file sleepecg-0.2.0.tar.gz.

File metadata

  • Download URL: sleepecg-0.2.0.tar.gz
  • Upload date:
  • Size: 21.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0.tar.gz
Algorithm Hash digest
SHA256 fd89d91d5ee5bc1ff640adb68a5b184b52022a987ab730368307a0ee7dbfca5f
MD5 ee55a6ba9d909779be4eb655872b2240
BLAKE2b-256 b7a857a7960bbe7b7d4662173564ed05a311c9ade37d906af3ef8e47c0eef22a

See more details on using hashes here.

File details

Details for the file sleepecg-0.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: sleepecg-0.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 34.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9a73c6e85997429d083eff530c7702679281e7d425d94bc8245728b77d612dad
MD5 d86fcc73f6b6a94bda5542080d45b42f
BLAKE2b-256 a73dde678163fa13a55b3ca47a47f9744ee5d7222f6a4e52006bd48e157dde84

See more details on using hashes here.

File details

Details for the file sleepecg-0.2.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: sleepecg-0.2.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 33.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ce2f8e4701d49beeb3ec70e3846099686cfc76342cfd2b17f895fa8417e86dab
MD5 8bf7e46202478fed45aeaa492e79c7c4
BLAKE2b-256 709655a7d8cb7e81ab195e04fd02f38d78acb23cb8903ff98c51e0d433080315

See more details on using hashes here.

File details

Details for the file sleepecg-0.2.0-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

  • Download URL: sleepecg-0.2.0-cp39-cp39-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 51.1 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f2dfe2a8f58d82ca0800ccc0e89723960438adfa8623d9cacd956688ca94bd45
MD5 61a573fd94dfd89b237a5f296075e7bd
BLAKE2b-256 8e984ef1b891bccdd82b65ca4e4868e90de327b9c0579415e79509e94b1cc82e

See more details on using hashes here.

File details

Details for the file sleepecg-0.2.0-cp39-cp39-manylinux2014_i686.whl.

File metadata

  • Download URL: sleepecg-0.2.0-cp39-cp39-manylinux2014_i686.whl
  • Upload date:
  • Size: 50.8 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0-cp39-cp39-manylinux2014_i686.whl
Algorithm Hash digest
SHA256 58192ca46ab90a059f530c572834a4d3b95056e3b4695381f700aabe3e7e686f
MD5 1921795eae5d4f8e6b8b34456421985f
BLAKE2b-256 fa4dac923d04356473613e03831249162f3a29ba6bfa532d97b187a62de1cea4

See more details on using hashes here.

File details

Details for the file sleepecg-0.2.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: sleepecg-0.2.0-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 51.1 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3ecccaf88cbf79a0daac5e796714f23dae618ca7118a25a8ae2d75bb02d7ce43
MD5 5d87f84c31bc17a1229813e012a23e63
BLAKE2b-256 a40b0554dca7af62b31d6d0f35c4e5dda2175393d07acbefadca569637e40106

See more details on using hashes here.

File details

Details for the file sleepecg-0.2.0-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: sleepecg-0.2.0-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 50.8 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 90f90241d6445daae516696e51ae7dd21bc64b575ff3af6318933896f676ab37
MD5 4e686cfe7a88a6f653a77400ecf4e526
BLAKE2b-256 c322ba9ee2a948d0e02bdee5cf49a1f94fdf72bd35e91efa5d6c1c4e27f16827

See more details on using hashes here.

File details

Details for the file sleepecg-0.2.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: sleepecg-0.2.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 30.6 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 08949dfc529b8cecfd07726c0bbb82df8bb617033b5cdf18a39c6da4a4162ec2
MD5 78989a2d0807e213847cd7261c6a5ed5
BLAKE2b-256 57dcdc7eaa9c1a143243bc58fa45d47d2af9c7108ae9673249ab5cfb40b078c6

See more details on using hashes here.

File details

Details for the file sleepecg-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: sleepecg-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 30.5 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 64eb19b7529385e6946aafc4c45afd8cfad622b286eeb713903a8afabb32e2f3
MD5 5439ea1601a57534afb2f351ddff9370
BLAKE2b-256 cecd361064a480378f1418f77641d8f73d751061aa3cfb6036a88d238700e72e

See more details on using hashes here.

File details

Details for the file sleepecg-0.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: sleepecg-0.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 34.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b2528772efb71b8c57bdf2e5c79c63b6172e79d03835302345480ae00df89ec5
MD5 55b3ff0c9237c1842ed13426dcc69ea3
BLAKE2b-256 663f65dbafb840548064dfb2bd5d1350319ded0d027c35e5850143ad1f8e6de1

See more details on using hashes here.

File details

Details for the file sleepecg-0.2.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: sleepecg-0.2.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 33.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 dea850684fe3d30dd3802c860f420807eebbfbc2d414bc0b1bc10858d83dd0f5
MD5 07a68d6d5f2e79df61b84c2b8c60e828
BLAKE2b-256 a8b5621831e8a6e66728d71f7978c57e2b490564dd1337fe839fe5199617e3e1

See more details on using hashes here.

File details

Details for the file sleepecg-0.2.0-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

  • Download URL: sleepecg-0.2.0-cp38-cp38-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 51.4 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c670396767a58f2c0e92f55756e9985d44bfb1f762ad55ecacbd56ee43169f86
MD5 b406ad4fdc059c5558302dd275f97737
BLAKE2b-256 4f34371807c6964985f1257e4be6f8ccaf8f7a48bc94d241c07a8cb4c50037d4

See more details on using hashes here.

File details

Details for the file sleepecg-0.2.0-cp38-cp38-manylinux2014_i686.whl.

File metadata

  • Download URL: sleepecg-0.2.0-cp38-cp38-manylinux2014_i686.whl
  • Upload date:
  • Size: 51.1 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0-cp38-cp38-manylinux2014_i686.whl
Algorithm Hash digest
SHA256 781d1a3fac3f29ecb766e5c51edb82c7c02663867d774286ca83118b2cd4db7f
MD5 67b192fe41054349e8eb22504c8c07c6
BLAKE2b-256 b491ba59f265467d622fd9ea4f60d104d7ca8eeb278c7bea3c23c471e3be58a0

See more details on using hashes here.

File details

Details for the file sleepecg-0.2.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: sleepecg-0.2.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 51.4 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4898b5b1d9ddc970fa9e6bcc848842374423bb5a83691aa189b59a27033baf5b
MD5 8d2d4df3cc48de305bfa0655a0388f09
BLAKE2b-256 ada26812ee14b549036f5ebd898abd8dfe67f3b53192b950fffc9c6aaac9b0ce

See more details on using hashes here.

File details

Details for the file sleepecg-0.2.0-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: sleepecg-0.2.0-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 51.1 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1e279683eea70d752a59c179f593e9c16a6e34070d2eae48f457b8c3635d112d
MD5 788ea4cc6d485a5171388d40536c93e0
BLAKE2b-256 555ee8e87a9a455c6ec30110325d385bd5d09aec945648707b8ef4a7aa5ba9ac

See more details on using hashes here.

File details

Details for the file sleepecg-0.2.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: sleepecg-0.2.0-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 30.6 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 54d1086394e1cc4c0d604adfcf502f2ae47ab23ccb32b00f31ebaf0094ca53f6
MD5 2f9f55da8b2572d2f208a74f6e5fa3b0
BLAKE2b-256 cf85a0e09988ae22474bdd3cf85100b5da1605db89083b1bb1c3ea2fb1808d5f

See more details on using hashes here.

File details

Details for the file sleepecg-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: sleepecg-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 30.5 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8914244b7a65a2dd2cc2bcaa2e805de2b3b80d0d1e0519316ba97f40a4de7bb8
MD5 253a5a7cb015373446bc64280bd0ca38
BLAKE2b-256 35d6bab723451f30506b5f29715b8775128ee01c1285a8d4b3d1cd57909bcb54

See more details on using hashes here.

File details

Details for the file sleepecg-0.2.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: sleepecg-0.2.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 34.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e01ff7b656613a874e6575dc40f58e765f0d1dfdce3d60225c736d617e71e400
MD5 c73bfc36946d7f226b236fe28588ad31
BLAKE2b-256 1d598ae7e6a4b160e330b2b515be5827ff05040ae5d2eef9862694ff6d322cf1

See more details on using hashes here.

File details

Details for the file sleepecg-0.2.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: sleepecg-0.2.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 33.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 b9c467ae6b030dd3ce88441170c7762a2e5ea6eb49154ab3376ce5b08ff2b21b
MD5 c976575e418c4422024e6c3aa58ad686
BLAKE2b-256 f4ba761912d78fb68b7989dc153f34e112227a2b7220f2ada75dfc9c2162c145

See more details on using hashes here.

File details

Details for the file sleepecg-0.2.0-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: sleepecg-0.2.0-cp37-cp37m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 52.0 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e5e588fdd00dd58edb5db63a6af749383c9fbb51e42bb32a472f79bdaa1df529
MD5 03af52b23b3754ba0d054c927cd05951
BLAKE2b-256 68337957b6ba79ec6f8c4d58840bd2b76d778cbfa7b888f9454ef48be0247f35

See more details on using hashes here.

File details

Details for the file sleepecg-0.2.0-cp37-cp37m-manylinux2014_i686.whl.

File metadata

  • Download URL: sleepecg-0.2.0-cp37-cp37m-manylinux2014_i686.whl
  • Upload date:
  • Size: 51.8 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0-cp37-cp37m-manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b0c87dd6e9048e0ee49b770a27d965f6d0807c9af42e44448cd19d59b1ee6795
MD5 98285d954477bb61400d4b6909f0e055
BLAKE2b-256 0d72d7a7a68f1b1155d5684bd3ccf537f59b1f585cc147e8174802fb856964b6

See more details on using hashes here.

File details

Details for the file sleepecg-0.2.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: sleepecg-0.2.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 52.0 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c10673140254914a6d0153f58fd08bdfefb561266c609db43077fbf6facc346b
MD5 a1ee6bdd281cf89e1f32947633ba1d2d
BLAKE2b-256 f985a3cecd8508760bb29cc8ba440d4856f46ae2464e27bc77e9af187376b78b

See more details on using hashes here.

File details

Details for the file sleepecg-0.2.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: sleepecg-0.2.0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 51.8 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 bc82f12e7e6a890cc1f08afd7e2c446f032922709177a42b47dce017dd41587c
MD5 f9f2325fbab5946d4bac9efb3e8da913
BLAKE2b-256 070a95b36fd85d272ab0ad1ce756e353b85ccf119d87b69c133d97e21716bc59

See more details on using hashes here.

File details

Details for the file sleepecg-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: sleepecg-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 30.4 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sleepecg-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2ea03300faff3161ed31b3b76c59e521aa355b8572589cb366cc4b1b774ea33c
MD5 4eab2dc717115c6c2fb05c7f726a0db5
BLAKE2b-256 686dcbf2984b02b61dc50f07a925cd4aafc46881c4837a255818224623158a10

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page