Quality metric from spike trains
Project description
slidingRefractory
Code to perform a new test of whether neurons have contaminated refractory periods, with a sliding window
Python
Installation
Install using pip:
pip install slidingRP
Install using sources in development mode. First clone the repository.
cd slidingRefractory
pip install -e .
Minimal working example
from pathlib import Path
import numpy as np
import pandas as pd
from slidingRP import metrics
TEST_DATA_PATH = Path(slidingRP.__file__).parent.parent.joinpath("test-data", "integration")
params = {'sampleRate': 30000, 'binSizeCorr': 1 / 30000}
spikes = pd.read_parquet(TEST_DATA_PATH.joinpath('spikes.pqt'))
table = slidingRP.slidingRP_all(spikes.times, spikes.clusters, **params)
assert np.allclose(pd.read_parquet(TEST_DATA_PATH.joinpath("rp_table.pqt")), pd.DataFrame(table), equal_nan=True)
Contribute
Run unit tests
pytest python/test_*
Upload package
rm -fR dist
rm -fR build
python setup.py sdist bdist_wheel
twine upload dist/*
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
slidingRP-1.0.0.tar.gz
(21.4 kB
view hashes)
Built Distribution
slidingRP-1.0.0-py3-none-any.whl
(25.9 kB
view hashes)
Close
Hashes for slidingRP-1.0.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 36acc9d2d37a390b53ffae0d1165c790f8b223787bcd9f3709b3da8da02ab637 |
|
MD5 | 21e421cfe49b457433accac5f41ca040 |
|
BLAKE2b-256 | 604b4e437d8ac6b8dc2a09730d81da0566ba6b073f29da379ccbdad32ccfcc8d |