Skip to main content

Spatial Model Editor python bindings

Project description

sme

pypi releases open in colab python versions

sme is the Python interface to Spatial Model Editor.

It can be used to modify parameters in a model and to simulate a model. See the documentation for more information.

It can be installed from PyPI using pip:

pip install sme

You can also try it out online without installing anything using Google Colab (click on Runtime -> Run all or press Ctrl+F9 to get started)

For additional functionality such as plotting and parameter fitting, see sme-contrib

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

sme-1.3.6-pp39-pypy39_pp73-win_amd64.whl (27.5 MB view details)

Uploaded PyPy Windows x86-64

sme-1.3.6-pp39-pypy39_pp73-macosx_10_14_x86_64.whl (21.4 MB view details)

Uploaded PyPy macOS 10.14+ x86-64

sme-1.3.6-pp38-pypy38_pp73-win_amd64.whl (27.5 MB view details)

Uploaded PyPy Windows x86-64

sme-1.3.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (27.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

sme-1.3.6-pp38-pypy38_pp73-macosx_10_14_x86_64.whl (21.4 MB view details)

Uploaded PyPy macOS 10.14+ x86-64

sme-1.3.6-pp37-pypy37_pp73-win_amd64.whl (27.5 MB view details)

Uploaded PyPy Windows x86-64

sme-1.3.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (27.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

sme-1.3.6-pp37-pypy37_pp73-macosx_10_14_x86_64.whl (21.4 MB view details)

Uploaded PyPy macOS 10.14+ x86-64

sme-1.3.6-cp311-cp311-win_amd64.whl (27.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

sme-1.3.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (27.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

sme-1.3.6-cp311-cp311-macosx_10_14_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

sme-1.3.6-cp310-cp310-win_amd64.whl (27.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

sme-1.3.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (27.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

sme-1.3.6-cp310-cp310-macosx_10_14_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

sme-1.3.6-cp39-cp39-win_amd64.whl (27.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

sme-1.3.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (27.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

sme-1.3.6-cp39-cp39-macosx_10_14_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

sme-1.3.6-cp38-cp38-win_amd64.whl (27.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

sme-1.3.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (27.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

sme-1.3.6-cp38-cp38-macosx_10_14_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

sme-1.3.6-cp37-cp37m-win_amd64.whl (27.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

sme-1.3.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (27.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

sme-1.3.6-cp37-cp37m-macosx_10_14_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

sme-1.3.6-cp36-cp36m-win_amd64.whl (27.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

sme-1.3.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (27.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

sme-1.3.6-cp36-cp36m-macosx_10_14_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file sme-1.3.6-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for sme-1.3.6-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 27607da052bdda205b0a9d5f1c5b4644f8e0151fccae1efe15b13914c1bd29a7
MD5 a4f2d12b20732a05f96d5ceab12399d0
BLAKE2b-256 43bb017859e185896dc6475204b4700f07c332086f9dceab34e0baa74d79f744

See more details on using hashes here.

File details

Details for the file sme-1.3.6-pp39-pypy39_pp73-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.3.6-pp39-pypy39_pp73-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d1a6145a27c7c6e34a1ee2e69965b793378961df0c9e223882d59fc5f5e59623
MD5 be7565f27a83cf40c5c7ec1891eddacf
BLAKE2b-256 74323f546788ade94a342e90d2052609719135e629fe6b220e55c4eac6c1e677

See more details on using hashes here.

File details

Details for the file sme-1.3.6-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for sme-1.3.6-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 be126ad41c5bcdead413cae618f432615fdae35f00b0098992fdbb6076b4dbc8
MD5 c30dcb1d09d8ba4bd2e65c1650779912
BLAKE2b-256 df49933c7181f8ee955179b818830d7112a92e37c067871813bac4dd01d4fdea

See more details on using hashes here.

File details

Details for the file sme-1.3.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.3.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 55124d55d65aff17101e0e76ba70a39efdb634fbb305ae8dceed62aa3b2943c4
MD5 e345b5a90a2791ef05b1000b5c13b855
BLAKE2b-256 4d7129633736e5b5d65beebd6d662ea2e830189d3b3bf1330d041394f20be298

See more details on using hashes here.

File details

Details for the file sme-1.3.6-pp38-pypy38_pp73-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.3.6-pp38-pypy38_pp73-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7e9ac6d9a50f6e41a6c47d4151ad056880120c3385f22b9202fed8c30bd74d20
MD5 4bb61b63849c942341b20405b81a5e94
BLAKE2b-256 3185046f9fa51bf480a9a4ffdfa411aa1de0421c4a423fccc483eaa6699191b8

See more details on using hashes here.

File details

Details for the file sme-1.3.6-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for sme-1.3.6-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 85186c5ea72ea43f77e7c1608717c3f6351fda93481181becce21c9799cb5092
MD5 7c792826106d277e5750956a41729263
BLAKE2b-256 6732265daf75b0a6ca71f6a88d4c477519dd7739c82813d1fea0b8892e275075

See more details on using hashes here.

File details

Details for the file sme-1.3.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.3.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b328d6071a25f0ba7f60afe6c1ffc358866877bc523ac82818a3a5b3b65af0e0
MD5 2c75b18a2b99e4909633e8c6edd8f995
BLAKE2b-256 163c8e190ced9ac16e7612f425c984976bdaf8fe3b6cf3ac72d3ab994e4432ea

See more details on using hashes here.

File details

Details for the file sme-1.3.6-pp37-pypy37_pp73-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.3.6-pp37-pypy37_pp73-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7f132b7fb2264a8dbb955da0701cd2b38edd07cf0bb73cf40be169c24680aa6f
MD5 d30a1f8e32cf4693c7df651524ef82dc
BLAKE2b-256 ed9723f1a70f26ed298dd2bdb308f6ea19732e031118e2a5231a399129610e65

See more details on using hashes here.

File details

Details for the file sme-1.3.6-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: sme-1.3.6-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 27.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for sme-1.3.6-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 895a58805ab2ec539c0f7e6228286ac1a1ac416e169c033710f4fdc253a2f1eb
MD5 09a910d34c1fcf9e2d132be906da1aaf
BLAKE2b-256 c10519bf851a261677e5a3efea1617e04d77ad9a14e86fd00ea1dfd8d11ffa75

See more details on using hashes here.

File details

Details for the file sme-1.3.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.3.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f47fe816ff04a76ea283f593142f71cc4d419afe5e2a5e49d06732af97f01dc
MD5 f9cb0eaea6e4079359d55b812b0981d2
BLAKE2b-256 43bacada2ffe3ddc00edcdc9a6ee9e2df3e52d44828da606e72e707d5e7bbd78

See more details on using hashes here.

File details

Details for the file sme-1.3.6-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.3.6-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c8abeba598af4ac37edad466748bbc59c04958eba3c2da99362c96cd2acadf81
MD5 876f054d34226ad8e1c5130b96a98ac2
BLAKE2b-256 fc87b7b0ff40d4b0c058245d40b2fb7406c2ffd6ec291326d515b936f562dffd

See more details on using hashes here.

File details

Details for the file sme-1.3.6-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: sme-1.3.6-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 27.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for sme-1.3.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 66333a6d9c20575dabdafb338aea9fc391f0ed673469b357413d5c0b58a6e82e
MD5 6ddc5a4af8ba0a9f4fdb7d2eead7bd8f
BLAKE2b-256 06af6ecabb93830ff3fc870ad4afbf69921bf20d2828088b60e81e44f8bb06b8

See more details on using hashes here.

File details

Details for the file sme-1.3.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.3.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b1cbc7bb49d8786940d7fff596544a3819163028ba7524c1bc8ec1fd2dac4310
MD5 e5cc51a1936cd80f71ba933ea6c4c666
BLAKE2b-256 34cd9f6390256873b809c244de88ca3b4d048b4c4d61d95619a8383bdea2371b

See more details on using hashes here.

File details

Details for the file sme-1.3.6-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.3.6-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0d2a75569f59dac4257224fa52b50bd21293d17643d68c50479f953068b168ab
MD5 4ce60465d5193559557e5ac7f211ad89
BLAKE2b-256 c252824428c3aeed7dea9de9b291188efc24ee8866984fb8329b72c3d142815a

See more details on using hashes here.

File details

Details for the file sme-1.3.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: sme-1.3.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 27.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for sme-1.3.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 43d87bf80638020c4b0454d30eb56d591960a5569749ae13994156bf570a8a9e
MD5 5bf3db5f2cdf0f58f243fb026287977d
BLAKE2b-256 cb0d79b6d182c3db39e717648731e316282ec1ea2d9883334485e91e830f71d0

See more details on using hashes here.

File details

Details for the file sme-1.3.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.3.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 33f4774c422e739304880622c891479f01cf8c8473c93d668f8d1a3fa4579625
MD5 e4ce06b53fc783f4ebbb6f62c806027e
BLAKE2b-256 200bdf9f42e146e446aa84fa9bd76a6546e0b7c231dda9891ad0e9cb976bc761

See more details on using hashes here.

File details

Details for the file sme-1.3.6-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.3.6-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1ae1277998d9510648d163b6c5fe007e15a1c64e481609deb4183f77d1e220a2
MD5 e1bb6692de7ccd06de29ca4b08c36e1a
BLAKE2b-256 7825906eec4fa57c2b2a1d64ddf7e281ecc027fbe295a2f5eab5ca44a7e2020e

See more details on using hashes here.

File details

Details for the file sme-1.3.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: sme-1.3.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 27.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for sme-1.3.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a08c48a6c459f8c5d5b7a93f6eb32c5eeeae01f935c26501f8c0d5d608498f95
MD5 0c3e308c059b3e0aa34c2574d4e67192
BLAKE2b-256 eff48e4225f7d1d7d8e15c5eff8cafb6033fabb1bff31611802a78776926bd6d

See more details on using hashes here.

File details

Details for the file sme-1.3.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.3.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1c6551c878d08fcbe83117c79396c5506237b8ded1d2d67f15435e2e6d65c828
MD5 6fe64b096deb2e20264a93ca9dead109
BLAKE2b-256 d245bf21713e4408d38cd520773ffbb465ee076c676bc32c13514cf1e4c1c1fb

See more details on using hashes here.

File details

Details for the file sme-1.3.6-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.3.6-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d591162864da35c39c78d99c23fc80198e0a76dbe018374f37dc1969f926b8e9
MD5 e5f4f9c75faefb454987fcb5b8e0513a
BLAKE2b-256 24dbbf8518b9d7e8a9481ed57ab1aaa094ad579b9c640be7d6133dc0969841f7

See more details on using hashes here.

File details

Details for the file sme-1.3.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: sme-1.3.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 27.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for sme-1.3.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7807be510b18ff464ef87fc4bebed82a6914f1f2d49b5ca50ecefd5461c27961
MD5 01d132eeb14deb9878d73c9c669e70fc
BLAKE2b-256 d40766c07c99ab6c7cef276928b8281a0f0f1bfcad91835110149a198c0e05ee

See more details on using hashes here.

File details

Details for the file sme-1.3.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.3.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0eb07c0d26d63c01cbb5fd771f6a49fe4b5dec46cd07bd02b79111ede2292120
MD5 a8b5902749ca180cf3c95434e1c62c71
BLAKE2b-256 22cfab5eecf3fed0bbcec97050e44df1ac493a2faecff326f283a3ddac7ad138

See more details on using hashes here.

File details

Details for the file sme-1.3.6-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.3.6-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ca198b0f6f7cbf5e9f620175f93fc28225daab6610335dac7c15e10a3edeede3
MD5 e277bf2badd930b51f40918b0d1c1cab
BLAKE2b-256 bc5992bf768df4797ce2391788bfe2af03b42b0fcd4716828ed5eef30a4788cd

See more details on using hashes here.

File details

Details for the file sme-1.3.6-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: sme-1.3.6-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 27.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for sme-1.3.6-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 676e230d83988ca33b8926ba37bddbdaa9273423a9b494d80414a6bbd587dc97
MD5 3d150f2e1bcf38352fd6e8b6cae92fa3
BLAKE2b-256 e92bba885996d6613701f2b1047f1beb8eb659b8207124617aa0a75f875dbb6d

See more details on using hashes here.

File details

Details for the file sme-1.3.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.3.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a8c7905a94d7ee9cbbb4d6dd798b79364fb7096f9fa59e5ab6caa3a073c96a76
MD5 3c95d01be08b2b39693b13664a536cd5
BLAKE2b-256 bfe61422964aeea336622e1eea3327a1a484a1ed31b4fc27e801d4c7776161ea

See more details on using hashes here.

File details

Details for the file sme-1.3.6-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.3.6-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a75d22cc617ad894dab978cb4b49752c6eb2e5bce12c739ac073826e34e4ad41
MD5 ad2e55e69eedbffc04a6f8b2bd13362e
BLAKE2b-256 3c2a8524b568d80635329fe855fd6a0e547c48a9eafe5f1983babe986932d2cf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page