Skip to main content

Spatial Model Editor python bindings

Project description

icon

Spatial Model Editor

github releases pypi releases open in colab documentation GUI/CLI Release Builds codecov sonarcloud quality gate status DOI

A GUI editor to create and edit spatial SBML models of bio-chemical reactions and simulate them using the dune-copasi solver for reaction-diffusion systems.

To get started, download and run the GUI for your operating system

Linux MacOS Windows
linux macOS linux

Or take a look at our website or the documentation

Pre-release preview binaries are also available which are built from the main branch and can be used for testing new features before the next release:

Note: on linux some additional system libraries are required that may not be installed by default. To install them:

  • Fedora/RHEL/CentOS: sudo yum install xcb-util-image xcb-util-keysyms xcb-util-renderutil xcb-util-wm

screenshot

Contributing

Bug reports and feature requests are very welcome, as are fixes or improvements to the documentation (to edit a page in the documentation, click the 'Edit on GitHub' button in the top right).

If you are interested in contributing code, please see the contributing guidelines.

Dependencies

Spatial Model Editor makes use of the following open source libraries:

Licensing Note

The source code in this repository is released under the MIT license, which is a permissive GPL-compatible license.

The open source libraries that it uses are either also released under a permissive GPL-compatible license, or under a GPL license. As described in the gpl-faq, this means that the work as a whole is then licensed under the GPL.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

sme-1.5.0-cp312-cp312-win_amd64.whl (33.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

sme-1.5.0-cp312-cp312-manylinux_2_28_x86_64.whl (35.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

sme-1.5.0-cp312-cp312-macosx_11_0_x86_64.whl (27.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ x86-64

sme-1.5.0-cp312-cp312-macosx_11_0_arm64.whl (23.7 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

sme-1.5.0-cp311-cp311-win_amd64.whl (33.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

sme-1.5.0-cp311-cp311-manylinux_2_28_x86_64.whl (35.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

sme-1.5.0-cp311-cp311-macosx_11_0_x86_64.whl (27.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ x86-64

sme-1.5.0-cp311-cp311-macosx_11_0_arm64.whl (23.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

sme-1.5.0-cp310-cp310-win_amd64.whl (33.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

sme-1.5.0-cp310-cp310-manylinux_2_28_x86_64.whl (35.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

sme-1.5.0-cp310-cp310-macosx_11_0_x86_64.whl (27.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

sme-1.5.0-cp310-cp310-macosx_11_0_arm64.whl (23.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

sme-1.5.0-cp39-cp39-win_amd64.whl (33.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

sme-1.5.0-cp39-cp39-manylinux_2_28_x86_64.whl (35.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

sme-1.5.0-cp39-cp39-macosx_11_0_x86_64.whl (27.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

sme-1.5.0-cp39-cp39-macosx_11_0_arm64.whl (23.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

sme-1.5.0-cp38-cp38-win_amd64.whl (33.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

sme-1.5.0-cp38-cp38-manylinux_2_28_x86_64.whl (35.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

sme-1.5.0-cp38-cp38-macosx_11_0_x86_64.whl (27.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ x86-64

sme-1.5.0-cp38-cp38-macosx_11_0_arm64.whl (23.7 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

sme-1.5.0-cp37-cp37m-win_amd64.whl (33.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

sme-1.5.0-cp37-cp37m-manylinux_2_28_x86_64.whl (35.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

sme-1.5.0-cp37-cp37m-macosx_11_0_x86_64.whl (27.1 MB view details)

Uploaded CPython 3.7m macOS 11.0+ x86-64

File details

Details for the file sme-1.5.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: sme-1.5.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 33.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for sme-1.5.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 af8c97eb9b95907c1799b829216e9c048c5d69a19f80bf5e480629e76d7e64a9
MD5 f4b0d550d76baf910f32801aaf26194e
BLAKE2b-256 64d57c943c7e9202a39fa9e3000323619a608ae80dc7946db7fd55e101461c11

See more details on using hashes here.

File details

Details for the file sme-1.5.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.5.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 33598c8909a3d9cea5e4fbfceedf1527fe3bc4302c82ce4685b839191c2f43f6
MD5 73259dc311cf2aaea0b72c5b7a1cb755
BLAKE2b-256 2537b952c345e36660c3a958baab4356b2458fde33dc4f45a896b6d0bf061be2

See more details on using hashes here.

File details

Details for the file sme-1.5.0-cp312-cp312-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.5.0-cp312-cp312-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 3d78be3149a63ba1cad1820ed6389dd235bec7abbbbaf946cac5f89cf5f9163e
MD5 d6aade39bf405d0a86aae4dd5a0ed6b6
BLAKE2b-256 2802b790c396d25e7e937b083789a656a7bb396e2ee4eaef10c86e4eafe025bb

See more details on using hashes here.

File details

Details for the file sme-1.5.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sme-1.5.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a2dfba661aebf1f3fb4e1688ac519bbf21b2585a154f880c54526679fc0369c5
MD5 b490a3311ea64ec591cc99e9e4202ac8
BLAKE2b-256 a29a8ca82909da7d23401f07f358d97bbd0532d94f745dbfc5ea1b74b6677e69

See more details on using hashes here.

File details

Details for the file sme-1.5.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: sme-1.5.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 33.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for sme-1.5.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1e84010c5bc171e49ca23499b628105259744afe4c3c7fca37d0992f5794a174
MD5 634808b311b02ef91d9a51ea9a148a6e
BLAKE2b-256 a13588a057f79430850a4f10000f06b7da0e5fe2b51617b157f7e5f2b572a9ee

See more details on using hashes here.

File details

Details for the file sme-1.5.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.5.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 17cddc2ea77a3ff36142609f6daa8d5877ad243cb646b00716a8a03405fa5825
MD5 e17f23fd3e38616e8c9773921280ddec
BLAKE2b-256 b5b02b51ad93c806b3214b7db53bd6e0035cb14c441fb9322962239ed44adc19

See more details on using hashes here.

File details

Details for the file sme-1.5.0-cp311-cp311-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.5.0-cp311-cp311-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 cadf8b5f371b7efcb9e3424433c1590861a875a577a78556cc2a098b138ad073
MD5 65fc22fc0d4dd97fd142e43cc1549d40
BLAKE2b-256 08c3883d4a7e49682f6f6eb5ad0cf9f79cbb374adefc0f2c904f5a4bc7cbc095

See more details on using hashes here.

File details

Details for the file sme-1.5.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sme-1.5.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 935e5d83ad51c8cabeb1d597bc7414810e2204208ab423cb893f58603fff2145
MD5 2e35f698567d7f46d9d26a5e560ded9d
BLAKE2b-256 5d11cc8da57157c0f9e6ce195653e3cac7d9e862f3a276b81fda5a244e764744

See more details on using hashes here.

File details

Details for the file sme-1.5.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: sme-1.5.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 33.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for sme-1.5.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 247a8d0e1fc106a4559d522deee751c6dd8fd23376d5e139a424e0d6192c6dda
MD5 051a0c46312a47b97cdabca1f49488db
BLAKE2b-256 5d61721b068ff4463cf9f27d6abaad9aade5bc6d4d1ff8df42496707d9a236ba

See more details on using hashes here.

File details

Details for the file sme-1.5.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.5.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9c8057427149d190ca11bdb9f03fba6d34819d93758a1e7689452b83cfd04985
MD5 2197c73c0d458514a42679cab1269457
BLAKE2b-256 822a685009643337690734b89516b2c341b34b05b92135bd09c56597f81576df

See more details on using hashes here.

File details

Details for the file sme-1.5.0-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.5.0-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 ab6bb75b75ee7aeae221b904eb6142fb41c3e656a8277cebcaf175519b162e8e
MD5 cae813a26f960a2a37a5ee52ba9d1687
BLAKE2b-256 b1dfea60640b51cd24517a2f8b45425e52ddd349191c777c64288ae86bb0721d

See more details on using hashes here.

File details

Details for the file sme-1.5.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sme-1.5.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 de5d2b55aa10aa603db61cb453ebb7b8e8f58e4d031a23fc195869098a836311
MD5 d17480331f0f21846c2c9a3892d12959
BLAKE2b-256 7eb8ac0685c405b3cc36f4f1171625b8e8179b2fd82400fc580f1adda99c0cc4

See more details on using hashes here.

File details

Details for the file sme-1.5.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: sme-1.5.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 33.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for sme-1.5.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b7281e491895b5a5737807b4a3dc7ae844aaf0ad90bb869068d7a287670725f4
MD5 f682ee6445485791737dde755f82bd3d
BLAKE2b-256 25d3f0976a60ee56cff95609f6e28f4ee02a6ebda5c8d142091076fa1519332a

See more details on using hashes here.

File details

Details for the file sme-1.5.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.5.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b7dbb086dc0a89e2795401862202112586ce157f8874eb79d18bfd5d30a3df5f
MD5 d43c2790bc0f0062892168675c4a43d4
BLAKE2b-256 077f0f68312ec7b58895eb948996da9476689a6db47a8a2811bac86308b8a520

See more details on using hashes here.

File details

Details for the file sme-1.5.0-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.5.0-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 f72462dc447c4281c690111ec5848e13273875da5d0451bdcc697dabfcdf0243
MD5 9e7bf7defa16d07da3e1bda9790b8371
BLAKE2b-256 6919f8b2a6578203f30771f7be0e7fa4465b95f64e0fa43422b50dadfd85d2e1

See more details on using hashes here.

File details

Details for the file sme-1.5.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sme-1.5.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a6e0537fa22d31cf0b1dc8269ace43f29cb8eaf6b152a7970197a9e544f82a63
MD5 4a700f4be70cc38317d11bb9c8cf74c7
BLAKE2b-256 53b79baba7d5cad722fbe70217984c1801fd50a3d46549c9aedac024f234ad98

See more details on using hashes here.

File details

Details for the file sme-1.5.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: sme-1.5.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 33.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for sme-1.5.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1f67ba6a5e0834b3a7d629634ce7c03504accefc4172a05c1f9f4f13a15b8739
MD5 d6a93882877f0c238b920a525a559847
BLAKE2b-256 13504a80f67bb75fd9719af09f85f29f0ab338a51d2e7ca224d54f57026c69bb

See more details on using hashes here.

File details

Details for the file sme-1.5.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.5.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 69a58a8c1b9b8303a3d759958be2d862042a543b7daa40686c6791f3b862ecea
MD5 503430d45c6d138dd418d12116309da4
BLAKE2b-256 3f12cc5a110273f33227093ae4b9356d76a2a66a62556a59d1f6698ca4994188

See more details on using hashes here.

File details

Details for the file sme-1.5.0-cp38-cp38-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.5.0-cp38-cp38-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 1f9e188bc077a8958a8a9b0fd79ceb66d6f3754db0755160962a1bf568e5bf7a
MD5 02e91f97c14c726bc7a5b9d32680a9bb
BLAKE2b-256 7da48211f27695b09453c94df21a940ccf2fb46aeae962550207e9890aafc866

See more details on using hashes here.

File details

Details for the file sme-1.5.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sme-1.5.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 defc3247c3fd8e4a572b68e631cd9cd4c6051e24c8378d960ec58b78484b9660
MD5 9a61a4632bf9f84773e895d56eac8810
BLAKE2b-256 905973939f54239b3f77e3477da536e7f3c7fcd03015e100955314b06ff4a6a3

See more details on using hashes here.

File details

Details for the file sme-1.5.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: sme-1.5.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 33.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for sme-1.5.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 84860f77c3e3e6e360e8d3f966ad336f2ed2627143e44c50a9f0731eb9b7bb48
MD5 d7e81715cb79936fd2cbd237a982a97e
BLAKE2b-256 e49b8c291496b0cd38b00ebf1f82b12aeebda94abc5f7dea2b247152d7f79673

See more details on using hashes here.

File details

Details for the file sme-1.5.0-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.5.0-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 8a5ffa0eaa096c3a86282b9e79b266a2827a4dea3ca4330b6928be0b3b03d932
MD5 d1a4f3178973d1170506e0e5dd5fff04
BLAKE2b-256 ecf83be218d902ebd1c22f24c92c1a6899a9e54ec3a3385031ba876b1694dbf7

See more details on using hashes here.

File details

Details for the file sme-1.5.0-cp37-cp37m-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.5.0-cp37-cp37m-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 eb2540f35a68cb218f16b7f0b7af037c4a5a960cdf7c2889e0542a7e534de25e
MD5 ec396c406f5d8a0f3559ae6a60279769
BLAKE2b-256 e08ffcd2b0d44f92bbf35c16e56006b3561643db5039f010d7bbe2980be218d6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page