Skip to main content

Spatial Model Editor python bindings

Project description

icon

Spatial Model Editor

github releases pypi releases open in colab documentation GUI/CLI Release Builds codecov sonarcloud quality gate status DOI

A GUI editor to create and edit spatial SBML models of bio-chemical reactions and simulate them using the dune-copasi solver for reaction-diffusion systems.

To get started, download and run the GUI for your operating system

Linux MacOS Arm64 MacOS Intel Windows
linux macOS arm64 macOS intel linux

Or take a look at our website or the documentation

Pre-release preview binaries are also available which are built from the main branch and can be used for testing new features before the next release:

Note: on linux some additional system libraries are required that may not be installed by default. To install them:

  • Fedora/RHEL/CentOS: sudo yum install xcb-util-image xcb-util-keysyms xcb-util-renderutil xcb-util-wm

screenshot

Contributing

Bug reports and feature requests are very welcome, as are fixes or improvements to the documentation (to edit a page in the documentation, click the 'Edit on GitHub' button in the top right).

If you are interested in contributing code, please see the contributing guidelines.

Dependencies

Spatial Model Editor makes use of the following open source libraries:

Licensing Note

The source code in this repository is released under the MIT license, which is a permissive GPL-compatible license.

The open source libraries that it uses are either also released under a permissive GPL-compatible license, or under a GPL license. As described in the gpl-faq, this means that the work as a whole is then licensed under the GPL.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sme-1.6.0.tar.gz (10.6 MB view details)

Uploaded Source

Built Distributions

sme-1.6.0-cp312-cp312-win_amd64.whl (41.7 MB view details)

Uploaded CPython 3.12 Windows x86-64

sme-1.6.0-cp312-cp312-manylinux_2_28_x86_64.whl (42.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

sme-1.6.0-cp312-cp312-macosx_11_0_x86_64.whl (40.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ x86-64

sme-1.6.0-cp312-cp312-macosx_11_0_arm64.whl (34.8 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

sme-1.6.0-cp311-cp311-win_amd64.whl (41.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

sme-1.6.0-cp311-cp311-manylinux_2_28_x86_64.whl (42.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

sme-1.6.0-cp311-cp311-macosx_11_0_x86_64.whl (40.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ x86-64

sme-1.6.0-cp311-cp311-macosx_11_0_arm64.whl (34.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

sme-1.6.0-cp310-cp310-win_amd64.whl (41.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

sme-1.6.0-cp310-cp310-manylinux_2_28_x86_64.whl (42.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

sme-1.6.0-cp310-cp310-macosx_11_0_x86_64.whl (40.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

sme-1.6.0-cp310-cp310-macosx_11_0_arm64.whl (34.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

sme-1.6.0-cp39-cp39-win_amd64.whl (41.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

sme-1.6.0-cp39-cp39-manylinux_2_28_x86_64.whl (42.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

sme-1.6.0-cp39-cp39-macosx_11_0_x86_64.whl (40.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

sme-1.6.0-cp39-cp39-macosx_11_0_arm64.whl (34.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

sme-1.6.0-cp38-cp38-win_amd64.whl (41.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

sme-1.6.0-cp38-cp38-manylinux_2_28_x86_64.whl (42.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

sme-1.6.0-cp38-cp38-macosx_11_0_x86_64.whl (40.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ x86-64

sme-1.6.0-cp38-cp38-macosx_11_0_arm64.whl (34.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

sme-1.6.0-cp37-cp37m-win_amd64.whl (41.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

sme-1.6.0-cp37-cp37m-manylinux_2_28_x86_64.whl (42.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

sme-1.6.0-cp37-cp37m-macosx_11_0_x86_64.whl (40.5 MB view details)

Uploaded CPython 3.7m macOS 11.0+ x86-64

File details

Details for the file sme-1.6.0.tar.gz.

File metadata

  • Download URL: sme-1.6.0.tar.gz
  • Upload date:
  • Size: 10.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for sme-1.6.0.tar.gz
Algorithm Hash digest
SHA256 460c7dc2e3a4ec4527816099e8a259b52dca040c890446d0cc2938f35e9bbd5e
MD5 f562216ef104dc7bb2f911f3d4f27f7c
BLAKE2b-256 105b533b096a9f31d001945aca184112bf54eae871ee2993679e672b746ebcfa

See more details on using hashes here.

File details

Details for the file sme-1.6.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: sme-1.6.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 41.7 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for sme-1.6.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ba07b251e2026ddad9c8586b7f17091dc1f3b50ed16d6713b851a6c9990f9ffe
MD5 59e356d7daa5b38196e82128c0845f0f
BLAKE2b-256 c233b087e0a64c927be9cedcc06187ab4e9e6e0a64e36fe395d81f9779af9c66

See more details on using hashes here.

File details

Details for the file sme-1.6.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.6.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 16a093c16680645197b1f382aeac6e72f1afd52071d88eeecbb9704cb5642841
MD5 32484ef5f2cb908fbbe1b5cf64600adc
BLAKE2b-256 0e09f80438877a3ba3792775ee3c3d2baefc8755c787d9e955df4ac819816e9b

See more details on using hashes here.

File details

Details for the file sme-1.6.0-cp312-cp312-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.6.0-cp312-cp312-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 9783feaa4c4a82b692ad3bf8e8225b144f25e3c86a80801990054c283203063e
MD5 32b45a7e748595ae024ea0a7dd2c7c9d
BLAKE2b-256 be3752da7bf5d06d262cfb3e113699edd04cbc1374db690f39a86d68522f1327

See more details on using hashes here.

File details

Details for the file sme-1.6.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sme-1.6.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 319be68209257d534cb89a0a3f6463d5b2a25bfaa427b6ac485a28ea10183bd2
MD5 a094f5fe9ac65dd7f392123002d4dbfa
BLAKE2b-256 49666ee30ad4101484dd1394a96af5f5aa13c3d74a14cd46ac9d2cd0797be122

See more details on using hashes here.

File details

Details for the file sme-1.6.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: sme-1.6.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 41.7 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for sme-1.6.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 df378286506d34157709cf976f9fc235185b835b5dd8d82ac378d91aee66a796
MD5 1c57b289d3e982136153fa2f2cf19915
BLAKE2b-256 7d3ff4980aab7ac8337b284ec48db10ea666b8d0027874499690bf83fa91fa87

See more details on using hashes here.

File details

Details for the file sme-1.6.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.6.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 fa91ec90c751ae8d56df7d80b5a8b65e11ef95fbd88dbb8dcd7a72f88c30b935
MD5 a45319e0adbd93b2184b6a5dc4666f8f
BLAKE2b-256 47377edad9a1a299e11a9d956615cb04a3285c7e9cde6d6768a8b5cb473b8f95

See more details on using hashes here.

File details

Details for the file sme-1.6.0-cp311-cp311-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.6.0-cp311-cp311-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 dbd8ff0ce65fc77ce425a9493e8f70054737a527b9f2837262b259ea04c90b80
MD5 c743310fabed4a840fbe0a7db3ae2aa3
BLAKE2b-256 e46a663bc6ad987df6274472d9087b2d1c919ec708bb101157b3d6d1880e1813

See more details on using hashes here.

File details

Details for the file sme-1.6.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sme-1.6.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b0387ac9db39e98421551f2ca5d011342a2b68eb5a00869ab6008d31c0d59ce7
MD5 1bca1b1e09f16194ba50ce91cdace540
BLAKE2b-256 d859f9967c1166c923671bb06f202747d26992310849c130a5753da1d7711f88

See more details on using hashes here.

File details

Details for the file sme-1.6.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: sme-1.6.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 41.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for sme-1.6.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 cc8d17e9d8b9d7866f30e87a7e1f077388b392de9cd1bcaf0b635043e2232f06
MD5 7b1e2218f047f5613a0746a684ff5d66
BLAKE2b-256 e8c107895404f5c94a5c3f0d54bfd46ca2b9b17d3b370497aca4c173be21ef25

See more details on using hashes here.

File details

Details for the file sme-1.6.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.6.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 815d75b4c54aa149c94bfbd3208ceffd55899185e3683988ef7964089264b978
MD5 a6c2acb30cf7104222a9626a2032c6fe
BLAKE2b-256 dc75d23a3f839583106a4c838c5b9cbecc545a6c5c3dd220281ecc32569b9f30

See more details on using hashes here.

File details

Details for the file sme-1.6.0-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.6.0-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 81e25a223cc5d8b6d3a2121c2b1b76b93c5def987103cc973fca2e883f1f24ed
MD5 feed581244ea32d15050c5f6ddc2de91
BLAKE2b-256 21164049e999bf202ecfd8af05528955b5a0fb4566078e5befe9f7417c46164d

See more details on using hashes here.

File details

Details for the file sme-1.6.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sme-1.6.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c27635b970ec2a19b4d5ea4a1dc79793324c1d2491e2b28000e1bf125f7a47f7
MD5 f912f449da757f415d40e34f7ade86dd
BLAKE2b-256 d284967c6fe4b7471721e83a6e147eaac86b9a7921480d6262b8c7371dafcd5c

See more details on using hashes here.

File details

Details for the file sme-1.6.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: sme-1.6.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 41.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for sme-1.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c45c8a2ca2dc74f1eb600f1344ca56bb7dc1a431f0c459c8298adb8a8bc497c9
MD5 52e1e479725ddd795e58827d2e3d3b44
BLAKE2b-256 c399da0090cb9c806b56ccb8fb3c863f0cd239f0b6f22d00a307228d25744712

See more details on using hashes here.

File details

Details for the file sme-1.6.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.6.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b636e7a094f60151bc6424f57dd674a4f7ada0e316941abf9f23ddcd9f34aa5c
MD5 88f3bdf99c3939882cdd0589c5e71525
BLAKE2b-256 91cc2180ced1f6d3605c41da5e792cecd070f0a820cbad5b5c24f664db7de59f

See more details on using hashes here.

File details

Details for the file sme-1.6.0-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.6.0-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 210987899f1f7d35c69668556854e42053034bd07cc9ba60bd7ae6aa55162c1c
MD5 46752bf0d36ef7bf2181d57c0a80bc48
BLAKE2b-256 fb680db6498be10e5787cd4e13bfcf361ba11766aa0e3c04d3c2344d38329f83

See more details on using hashes here.

File details

Details for the file sme-1.6.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sme-1.6.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ccd46ded9ae6986e16799fb9fd03f1bebf26099414e481d03a52f237c0050b1d
MD5 1147d912143d0c91a27a12cf2a049a0e
BLAKE2b-256 0c3ed0f342c51c8fdb0bcba612d50e0d448f59bc92a99398a62707387c3640c8

See more details on using hashes here.

File details

Details for the file sme-1.6.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: sme-1.6.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 41.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for sme-1.6.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 50b294f19961c67a54b0740fe33408d9bc32f0e1337f924a69af0e55af9a0a63
MD5 0bf06938b0984b0b86a8765160986727
BLAKE2b-256 cbf40c732e0bf048ceaced65bff88a6e38ad4a814baa3d16f7a4deaff32de31e

See more details on using hashes here.

File details

Details for the file sme-1.6.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.6.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ae53c662c4ea428ce4ca8430dc59b690f9de3fa79790ff2eb3b594b1e39a6b9c
MD5 ec8cb93b938fc41e303ae0193b2d8a6f
BLAKE2b-256 5125bc0cce893ac4bf87c5399551a1ca7dc5089a51326fceff74aaf1f75644b8

See more details on using hashes here.

File details

Details for the file sme-1.6.0-cp38-cp38-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.6.0-cp38-cp38-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 c22899c96a1691124a52beef74038d39422c08a1be3c7288316a4197718c3738
MD5 411b5b611264adb424fa7e52f28a31eb
BLAKE2b-256 5c83ad4d08211113fcdd52d05449617715059fadb7e10d9651a8dde386b44288

See more details on using hashes here.

File details

Details for the file sme-1.6.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sme-1.6.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 29a19cf70d99edcc144d243da64e798b1a4d91bdda9e444d6c9d8159c1d9431b
MD5 75d80f25f2b7f270ccf1a37271a01c40
BLAKE2b-256 6c4ad154ec8ddad8c37c671524dfd11b9f416b1e32543ab41beac340975ddfe0

See more details on using hashes here.

File details

Details for the file sme-1.6.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: sme-1.6.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 41.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for sme-1.6.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c835734dc995cdaac0fb5231783ac3cb5a90b1d44290043a0720f07637074bc4
MD5 da8d8c1e5a48730e3bb6bbfdecf8b4fc
BLAKE2b-256 54a9cfc93191e9c7ae275a4d9966c9e225eef6316d83f89442df955d2bafeb32

See more details on using hashes here.

File details

Details for the file sme-1.6.0-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.6.0-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c9b5534e3caa8a84b5a3bb8f5e3be2cd38156dc1728f64ce60b5abe8561bbb9b
MD5 7cae53420d8720f3ddffbe783158cb45
BLAKE2b-256 e920237f38a4438a6f12c5ff6ab64ec350bec9dcf3499a748d224f89442a1c51

See more details on using hashes here.

File details

Details for the file sme-1.6.0-cp37-cp37m-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sme-1.6.0-cp37-cp37m-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 206743b18f91ae68c82a69ad107090f944f731468cdd8b2256744763d5df79ac
MD5 0872bfcbbe2d988802f69a4676541436
BLAKE2b-256 7ca859947a1df6ec4a9685403526af82e8125b828f6f53956c0d4d3b9eacd7c7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page