Skip to main content

Generate command line options from dataclasses.

Project description

Table of Contents

  1. Install
  2. Usage
    1. Dataclass to command line options
      1. Simple types
      2. Complex types
      3. Nested dataclass
    2. APIs
      1. Example

Generate command line options from dataclasses.

# config.py
from dataclasses import dataclass, asdict, field
from smile_config import from_dataclass

@dataclass
class Train:
    """Train config."""

    batch_size: int = 64


@dataclass
class ML:
    lr: Annotated[float, dict(help="learning rate", type=float)] = 0.001
    train: Train = Train()
    cc: list[int] = field(default_factory=lambda: [10])


@dataclass
class Example:
    """Example config."""

    ml: ML = ML()
    x: bool = True
    a: int | None = None

config = from_dataclass(Example()).config

print(config)

# If autocomplete is not working, try to add the following line to your config file:
from typing import cast
config = cast(Example, config)

You can access the config as namedtuple.

> python config.py --ml.cc 10 10 --ml.lr 0.001 --no-x --a "1"
Example(ml=ML(lr=0.001, train=Train(batch_size=64), cc=[10, 10]), x=False, a=1)

Also, auto generate help message with default value.

> python config.py
usage: collections.py [-h] [--ml.lr ML.LR] [--ml.train.batch_size ML.TRAIN.BATCH_SIZE] [--ml.cc ML.CC [ML.CC ...]] [--x | --no-x] [--a A]

Example config.

options:
  -h, --help            show this help message and exit
  --x, --no-x           - (default: True)
  --a A                 - (default: None)

ml:
  --ml.lr ML.LR         learning rate (default: 0.001)
  --ml.cc ML.CC [ML.CC ...]
                        - (default: [10])

ml.train:
  --ml.train.batch_size ML.TRAIN.BATCH_SIZE
                        - (default: 64)

Install

pip install -U smile_config

Usage

Dataclass to command line options

Simple types

Everything that argpase can handle. int, float, str, bool, and callable object.

@dataclass
class Simple:
    a: int = 1
    b: float = 2.0
    c: str = "hello"
    d: bool = False
    e: list[int] = field(default_factory=lambda: [10])

Will convert to:

parser.add_argument("--a", help="-", type=int, default=1)
parser.add_argument("--b", help="-", type=float, default=2.0)
parser.add_argument("--c", help="-", type=str, default="hello")
parser.add_argument("--d", help="-", type=bool, default=False, action="store_true")
parser.add_argument("--e", help="-", type=int, default=[10], nargs="+")

Complex types

Smile config uses Annotation to handle complex types, which will pass the second argument to parser.add_argument.

@dataclass
class C:
    x: Annotated[int, "Helps for x."] = 1

See the logic here:

The first argument is the type, e.g. int.

if the second argument is str, e.g. s, it will be passed as parser.add_argument("--x", help=s, ...).

If the second argument is a list, e.g. args, it will be passed as parser.add_argument("--x", ..., *args).

If the second argument is a dict, e.g. kwds, it will be passed as parser.add_argument("--x", ..., **kwds).

Nested dataclass

Of course! It does support nested dataclass.

@dataclass
class A:
    a: int = 1

@dataclass
class B:
    a: A = A()

@dataclass
class C:
    a: A = A()
    b: B = B()
    c: int = 0


print(from_dataclass(C()).config)

# Output:
# C(a=A(a=1), b=B(a=A(a=1)), c=0)

APIs

Smile config provides four APIs:

class Config:

    # the dataclass dict
    self.conf

    # the dataclass
    self.config

# Generate command line options from dataclass
def from_dataclass(dc: Dataclass) -> Config:...

# Convert dict to an existing dataclass
def from_dict(dc: Type[Dataclass], d: dict) -> Dataclass:...

# Merge a dict with an existing dataclass instance
def merge_dict(dc: Dataclass, d: dict) -> Dataclass:...

Example

@dataclass
class Eg:
    a: int = 1
    b: bool = False

conf = from_dataclass(Eg())

print(conf)  # Config
# output: Eg(a=1, b=False)

print(conf.conf)  # dict
# output: {'a': 1, 'b': False}

print(conf.config)  # Eg
# output: Eg(a=1, b=False)

conf_dc = from_dict(Eg, {"a": 2, "b": True})  # Type[Eg] -> dict -> Eg
print(conf_dc)
# output: Eg(a=2, b=True)

conf_merge = merge_dict(conf_dc, {"a": 3})  # Eg -> dict -> Eg
print(conf_merge)
# output: Eg(a=3, b=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smile-config-0.10.0.tar.gz (9.6 kB view details)

Uploaded Source

Built Distribution

smile_config-0.10.0-py3-none-any.whl (11.1 kB view details)

Uploaded Python 3

File details

Details for the file smile-config-0.10.0.tar.gz.

File metadata

  • Download URL: smile-config-0.10.0.tar.gz
  • Upload date:
  • Size: 9.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for smile-config-0.10.0.tar.gz
Algorithm Hash digest
SHA256 e665efba5190977d0f3cc65304d354976da07496fb4226dc5206222dd41857fb
MD5 6eb781000650bc690ca803e0b909e426
BLAKE2b-256 dfe6e415905cc7cb68d6fea1853737d3d60d65165165beab86f3317d1cad8439

See more details on using hashes here.

File details

Details for the file smile_config-0.10.0-py3-none-any.whl.

File metadata

File hashes

Hashes for smile_config-0.10.0-py3-none-any.whl
Algorithm Hash digest
SHA256 cd50c5d19f59b995c615b3cf21fb03bca2d990ae51f19c8cd7580ba31161756a
MD5 a1f78681f98801302bfb265cc4846876
BLAKE2b-256 22a8b21042b3da2eb8ec0f2bb82b046d7b2bd75306145687dfc77b2d3fd68f6c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page