Skip to main content

Generate command line options from dataclasses.

Reason this release was yanked:

The same as 0.9.12

Project description

Table of Contents

  1. Install
  2. Usage
    1. Dataclass to command line options
      1. Simple types
      2. Complex types
      3. Nested dataclass
    2. APIs
      1. Example

Generate command line options from dataclasses.

# config.py
from dataclasses import dataclass, asdict, field
from smile_config import from_dataclass

@dataclass
class Train:
    """Train config."""

    batch_size: int = 64


@dataclass
class ML:
    lr: Annotated[float, dict(help="learning rate", type=float)] = 0.001
    train: Train = Train()
    cc: list[int] = field(default_factory=lambda: [10])


@dataclass
class Example:
    """Example config."""

    ml: ML = ML()
    x: bool = True
    a: int | None = None

config = from_dataclass(Example()).config

print(config)

# If autocomplete is not working, try to add the following line to your config file:
from typing import cast
config = cast(Example, config)

> python config.py --ml.cc 10 10 --ml.lr 0.001 --no-x --a "1"
Example(ml=ML(lr=0.001, train=Train(batch_size=64), cc=[10, 10]), x=False, a=1)

> python config.py
usage: collections.py [-h] [--ml.lr ML.LR] [--ml.train.batch_size ML.TRAIN.BATCH_SIZE] [--ml.cc ML.CC [ML.CC ...]] [--x | --no-x] [--a A]

Example config.

options:
  -h, --help            show this help message and exit
  --x, --no-x           - (default: True)
  --a A                 - (default: None)

ml:
  --ml.lr ML.LR         learning rate (default: 0.001)
  --ml.cc ML.CC [ML.CC ...]
                        - (default: [10])

ml.train:
  --ml.train.batch_size ML.TRAIN.BATCH_SIZE
                        - (default: 64)

Install

pip install -U smile_config

Usage

Dataclass to command line options

Simple types

Everything that argpase can handle. int, float, str, bool, and callable object.

@dataclass
class Simple:
    a: int = 1
    b: float = 2.0
    c: str = "hello"
    d: bool = False
    e: list[int] = field(default_factory=lambda: [10])

Will convert to:

parser.add_argument("--a", help="-", type=int, default=1)
parser.add_argument("--b", help="-", type=float, default=2.0)
parser.add_argument("--c", help="-", type=str, default="hello")
parser.add_argument("--d", help="-", type=bool, default=False, action="store_true")
parser.add_argument("--e", help="-", type=int, default=[10], nargs="+")

Complex types

Smile config uses Annotation to handle complex types, which will pass the second argument to parser.add_argument.

@dataclass
class C:
    x: Annotated[int, "Helps for x."] = 1

See the logic here:

The first argument is the type, e.g. int.

if the second argument is str, e.g. s, it will be passed as parser.add_argument("--x", help=s, ...).

If the second argument is a list, e.g. args, it will be passed as parser.add_argument("--x", ..., *args).

If the second argument is a dict, e.g. kwds, it will be passed as parser.add_argument("--x", ..., **kwds).

Nested dataclass

Of course! It does support nested dataclass.

@dataclass
class A:
    a: int = 1

@dataclass
class B:
    a: A = A()

@dataclass
class C:
    a: A = A()
    b: B = B()
    c: int = 0


print(from_dataclass(C()).config)

# Output:
# C(a=A(a=1), b=B(a=A(a=1)), c=0)

APIs

Smile config provides four APIs:

class Config:

    # the dataclass dict
    self.conf

    # the dataclass
    self.config

# Generate command line options from dataclass
def from_dataclass(dc: Dataclass) -> Config:...

# Convert dict to an existing dataclass
def from_dict(dc: Type[Dataclass], d: dict) -> Dataclass:...

# Merge a dict with an existing dataclass instance
def merge_dict(dc: Dataclass, d: dict) -> Dataclass:...

Example

@dataclass
class Eg:
    a: int = 1
    b: bool = False

conf = from_dataclass(Eg())

print(conf)  # Config
# output: Eg(a=1, b=False)

print(conf.conf)  # dict
# output: {'a': 1, 'b': False}

print(conf.config)  # Eg
# output: Eg(a=1, b=False)

conf_dc = from_dict(Eg, {"a": 2, "b": True})  # Type[Eg] -> dict -> Eg
print(conf_dc)
# output: Eg(a=2, b=True)

conf_merge = merge_dict(conf_dc, {"a": 3})  # Eg -> dict -> Eg
print(conf_merge)
# output: Eg(a=3, b=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smile-config-0.9.11.tar.gz (9.3 kB view details)

Uploaded Source

Built Distribution

smile_config-0.9.11-py3-none-any.whl (10.8 kB view details)

Uploaded Python 3

File details

Details for the file smile-config-0.9.11.tar.gz.

File metadata

  • Download URL: smile-config-0.9.11.tar.gz
  • Upload date:
  • Size: 9.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.8

File hashes

Hashes for smile-config-0.9.11.tar.gz
Algorithm Hash digest
SHA256 9599d7694dc7031c81a5c855bc024b525b933907a80aaac4069e5cb56631a353
MD5 23849920660fa1ad2034b447e5dc904a
BLAKE2b-256 976269bbbf6bafbfa48400ace44d9274e21cd14030b18f991ada68661c72ee6d

See more details on using hashes here.

File details

Details for the file smile_config-0.9.11-py3-none-any.whl.

File metadata

File hashes

Hashes for smile_config-0.9.11-py3-none-any.whl
Algorithm Hash digest
SHA256 167b509fc162195c02cfe2f017e2e9db7a738c86b6edbd029e593eebae7704d5
MD5 03b0b6c3b935c948734bad3f52c79d9c
BLAKE2b-256 b897182e09a25af683e7d6a9dff504509a1dc74054704d662038eb8e169f957e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page