Skip to main content

Generate command line options from dataclasses.

Project description

Table of Contents

  1. Install
  2. Usage
    1. Dataclass to command line options
      1. Simple types
      2. Complex types
      3. Nested dataclass
    2. APIs
      1. Example

Generate command line options from dataclasses.

# config.py
from dataclasses import dataclass, asdict, field
from smile_config import from_dataclass

@dataclass
class Train:
    """Train config."""

    batch_size: int = 64


@dataclass
class ML:
    lr: Annotated[float, dict(help="learning rate", type=float)] = 0.001
    train: Train = Train()
    cc: list[int] = field(default_factory=lambda: [10])


@dataclass
class Example:
    """Example config."""

    ml: ML = ML()
    x: bool = True
    a: int | None = None

config = from_dataclass(Example()).config

print(config)

# If autocomplete is not working, try to add the following line to your config file:
from typing import cast
config = cast(Example, config)

You can access the config as namedtuple.

> python config.py --ml.cc 10 10 --ml.lr 0.001 --no-x --a "1"
Example(ml=ML(lr=0.001, train=Train(batch_size=64), cc=[10, 10]), x=False, a=1)

Also, auto generate help message with default value.

> python config.py
usage: collections.py [-h] [--ml.lr ML.LR] [--ml.train.batch_size ML.TRAIN.BATCH_SIZE] [--ml.cc ML.CC [ML.CC ...]] [--x | --no-x] [--a A]

Example config.

options:
  -h, --help            show this help message and exit
  --x, --no-x           - (default: True)
  --a A                 - (default: None)

ml:
  --ml.lr ML.LR         learning rate (default: 0.001)
  --ml.cc ML.CC [ML.CC ...]
                        - (default: [10])

ml.train:
  --ml.train.batch_size ML.TRAIN.BATCH_SIZE
                        - (default: 64)

Install

pip install -U smile_config

Usage

Dataclass to command line options

Simple types

Everything that argpase can handle. int, float, str, bool, and callable object.

@dataclass
class Simple:
    a: int = 1
    b: float = 2.0
    c: str = "hello"
    d: bool = False
    e: list[int] = field(default_factory=lambda: [10])

Will convert to:

parser.add_argument("--a", help="-", type=int, default=1)
parser.add_argument("--b", help="-", type=float, default=2.0)
parser.add_argument("--c", help="-", type=str, default="hello")
parser.add_argument("--d", help="-", type=bool, default=False, action="store_true")
parser.add_argument("--e", help="-", type=int, default=[10], nargs="+")

Complex types

Smile config uses Annotation to handle complex types, which will pass the second argument to parser.add_argument.

@dataclass
class C:
    x: Annotated[int, "Helps for x."] = 1

See the logic here:

The first argument is the type, e.g. int.

if the second argument is str, e.g. s, it will be passed as parser.add_argument("--x", help=s, ...).

If the second argument is a list, e.g. args, it will be passed as parser.add_argument("--x", ..., *args).

If the second argument is a dict, e.g. kwds, it will be passed as parser.add_argument("--x", ..., **kwds).

Nested dataclass

Of course! It does support nested dataclass.

@dataclass
class A:
    a: int = 1

@dataclass
class B:
    a: A = A()

@dataclass
class C:
    a: A = A()
    b: B = B()
    c: int = 0


print(from_dataclass(C()).config)

# Output:
# C(a=A(a=1), b=B(a=A(a=1)), c=0)

APIs

Smile config provides four APIs:

class Config:

    # the dataclass dict
    self.conf

    # the dataclass
    self.config

# Generate command line options from dataclass
def from_dataclass(dc: Dataclass) -> Config:...

# Convert dict to an existing dataclass
def from_dict(dc: Type[Dataclass], d: dict) -> Dataclass:...

# Merge a dict with an existing dataclass instance
def merge_dict(dc: Dataclass, d: dict) -> Dataclass:...

Example

@dataclass
class Eg:
    a: int = 1
    b: bool = False

conf = from_dataclass(Eg())

print(conf)  # Config
# output: Eg(a=1, b=False)

print(conf.conf)  # dict
# output: {'a': 1, 'b': False}

print(conf.config)  # Eg
# output: Eg(a=1, b=False)

conf_dc = from_dict(Eg, {"a": 2, "b": True})  # Type[Eg] -> dict -> Eg
print(conf_dc)
# output: Eg(a=2, b=True)

conf_merge = merge_dict(conf_dc, {"a": 3})  # Eg -> dict -> Eg
print(conf_merge)
# output: Eg(a=3, b=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smile-config-0.9.14.tar.gz (9.4 kB view details)

Uploaded Source

Built Distribution

smile_config-0.9.14-py3-none-any.whl (10.9 kB view details)

Uploaded Python 3

File details

Details for the file smile-config-0.9.14.tar.gz.

File metadata

  • Download URL: smile-config-0.9.14.tar.gz
  • Upload date:
  • Size: 9.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for smile-config-0.9.14.tar.gz
Algorithm Hash digest
SHA256 4007af18d736a2fb85c1c152a6732c547dbeb91c4fd1d5cf7873a2909ec17b9b
MD5 319dbc1623f46954c1a9980903ea800b
BLAKE2b-256 fb2f5dc9db4c1338b67359712fee77ea118beebef1cd36f86e401dc41688e606

See more details on using hashes here.

File details

Details for the file smile_config-0.9.14-py3-none-any.whl.

File metadata

File hashes

Hashes for smile_config-0.9.14-py3-none-any.whl
Algorithm Hash digest
SHA256 79588a611eab8cdf93cef9c926d2f28ee50cf602aba8a43fe47a85ae554ad87b
MD5 70e59e1341e5d951b6e2e056ba8864a9
BLAKE2b-256 da0fb141eb58aac9c29b2a0c375f450fc5c115c1f964a1225652b6f03f311343

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page