Skip to main content

Mask cosmic ray showers (snowballs) in JWST data

Project description

Algorithms for cleaning JWST data.

  • SnowblindStep: mask cosmic ray showers and snowballs
  • JumpPlusStep: flag jumps and saturated pixels caused by cosmic rays properly when there are frame-averaged groups
  • PersistenceFlagStep: flag pixels due to persistence between exposures
  • RcSelfCalStep: flag new hot pixels

Installation

pip install snowblind

Usage

The steps in snowblind run like any other pipeline steps. From the command line:

strun snowblind jw001234_010203_00001_nrcalong_jump.fits --suffix=snowblind

In Python:

from snowblind import SnowblindStep
from jwst.pipeline import Detector1Pipeline
from jwst.step import RampFitStep
from jwst.step import GainScaleStep


steps = {
    "jump": {
        "save_results": True,
    },
    "ramp_fit": {
        "skip": True,
    },
    "gain_scale": {
        "skip": True,
    },
}

Detector1Pipeline.call("jw001234_010203_00001_nrcalong_uncal.fits", steps=steps)
SnowblindStep.call("jw001234_010203_00001_nrcalong_jump.fits", save_results=True, suffix="snowblind")
rate, rateints = RampFitStep.call("jw001234_010203_00001_nrcalong_snowblind.fits")
rate = GainScaleStep.call(rate)
rate.save(rate.meta.filename.replace("snowblind", "rate"))

More to come on the other steps available.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

snowblind-0.2.1.tar.gz (19.9 kB view details)

Uploaded Source

Built Distribution

snowblind-0.2.1-py3-none-any.whl (12.0 kB view details)

Uploaded Python 3

File details

Details for the file snowblind-0.2.1.tar.gz.

File metadata

  • Download URL: snowblind-0.2.1.tar.gz
  • Upload date:
  • Size: 19.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for snowblind-0.2.1.tar.gz
Algorithm Hash digest
SHA256 1728e48c403a151208f4ba72161be4159b161d14bad7bfac53938a53320b7eb9
MD5 71948b0901de13db53cb8e4813803837
BLAKE2b-256 887ff76156ac347298342d6c45cd0e6f86047c9a48c22de0963dbb0b99eca30c

See more details on using hashes here.

File details

Details for the file snowblind-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: snowblind-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 12.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for snowblind-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 df431a6a2491caae5c66b492ec54c88b898ec72d4da9386bf6916e817f01b228
MD5 fea6cfbd75c650a80b57edc6ba12ddd2
BLAKE2b-256 6f2b4480abbe19e1f86195694670509ad64fc5a91feeadce3d24a657a3f61ffb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page