Skip to main content

Play and Record Sound with Python

Project description

This Python module provides bindings for the PortAudio library and a few convenience functions to play and record NumPy arrays containing audio signals.

Documentation:

http://python-sounddevice.readthedocs.io/

Source code repository and issue tracker:

http://github.com/spatialaudio/python-sounddevice/

Python Package Index:

http://pypi.python.org/pypi/sounddevice/

License:

MIT – see the file LICENSE for details.

Requirements

Python:

Of course, you’ll need Python. Any version where CFFI (see below) is supported should work. If you don’t have Python installed yet, you should get one of the distributions which already include CFFI and NumPy (and many other useful things), e.g. Anaconda or WinPython.

pip/setuptools:

Those are needed for the installation of the Python module and its dependencies. Most systems will have these installed already, but if not, you should install it with your package manager or you can download and install pip and setuptools as described on the pip installation page. If you happen to have pip but not setuptools, use this command:

python3 -m pip install setuptools --user
CFFI:

The C Foreign Function Interface for Python is used to access the C-API of the PortAudio library from within Python. It supports CPython 2.6, 2.7, 3.x; and is distributed with PyPy. If it’s not installed already, you should install it with your package manager (the package might be called python3-cffi or similar), or you can get it with:

python3 -m pip install cffi --user
PortAudio library:

The PortAudio library must be installed on your system (and CFFI must be able to find it). Again, you should use your package manager to install it (the package might be called libportaudio2 or similar). If you prefer, you can of course also download the sources and compile the library yourself. If you are using Mac OS X or Windows, the library will be installed automagically with pip (see “Installation” below).

NumPy (optional):

NumPy is only needed if you want to play back and record NumPy arrays. The classes sounddevice.RawStream, sounddevice.RawInputStream and sounddevice.RawOutputStream use plain Python buffer objects and don’t need NumPy at all. If you need NumPy, you should install it with your package manager or use a Python distribution that already includes NumPy (see above). Installing NumPy with pip requires a compiler and several additional libraries and is therefore not recommended for beginners.

Installation

Once you have installed the above-mentioned dependencies, you can use pip to download and install the latest release with a single command:

python3 -m pip install sounddevice --user

If you want to install it system-wide for all users (assuming you have the necessary rights), you can just drop the --user option.

To un-install, use:

python3 -m pip uninstall sounddevice

Usage

First, import the module:

import sounddevice as sd

Playback

Assuming you have a NumPy array named myarray holding audio data with a sampling frequency of fs (in the most cases this will be 44100 or 48000 frames per second), you can play it back with sounddevice.play():

sd.play(myarray, fs)

This function returns immediately but continues playing the audio signal in the background. You can stop playback with sounddevice.stop():

sd.stop()

If you know that you will use the same sampling frequency for a while, you can set it as default using sounddevice.default.samplerate:

sd.default.samplerate = fs

After that, you can drop the samplerate argument:

sd.play(myarray)

Recording

To record audio data from your sound device into a NumPy array, use sounddevice.rec():

duration = 10  # seconds
myrecording = sd.rec(duration * fs, samplerate=fs, channels=2)

Again, for repeated use you can set defaults using sounddevice.default:

sd.default.samplerate = fs
sd.default.channels = 2

After that, you can drop the additional arguments:

myrecording = sd.rec(duration * fs)

This function also returns immediately but continues recording in the background. In the meantime, you can run other commands. If you want to check if the recording is finished, you should use sounddevice.wait():

sd.wait()

If the recording was already finished, this returns immediately; if not, it waits and returns as soon as the recording is finished.

Alternatively, you could have used the blocking argument in the first place:

myrecording = sd.rec(duration * fs, blocking=True)

By default, the recorded array has the data type 'float32' (see sounddevice.default.dtype), but this can be changed with the dtype argument:

myrecording = sd.rec(duration * fs, dtype='float64')

Simultaneous Playback and Recording

To play back an array and record at the same time, use sounddevice.playrec():

myrecording = sd.playrec(myarray, fs, channels=2)

The number of output channels is obtained from myarray, but the number of input channels still has to be specified.

Again, default values can be used:

sd.default.samplerate = fs
sd.default.channels = 2
myrecording = sd.playrec(myarray)

In this case the number of output channels is still taken from myarray (which may or may not have 2 channels), but the number of input channels is taken from sounddevice.default.channels.

Device Selection

In many cases, the default input/output device(s) will be the one(s) you want, but it is of course possible to choose a different device. Use sounddevice.query_devices() to get a list of supported devices. The same list can be obtained from a terminal by typing the command

python3 -m sounddevice

You can use the corresponding device ID to select a desired device by assigning to sounddevice.default.device or by passing it as device argument to sounddevice.play(), sounddevice.Stream() etc.

Instead of the numerical device ID, you can also use a space-separated list of case-insensitive substrings of the device name (and the host API name, if needed). See sounddevice.default.device for details.

import sounddevice as sd
sd.default.samplerate = 44100
sd.default.device = 'digital output'
sd.play(myarray)

Callback Streams

Callback “wire” with sounddevice.Stream:

import sounddevice as sd
duration = 5  # seconds

def callback(indata, outdata, frames, time, status):
    if status:
        print(status, flush=True)
    outdata[:] = indata

with sd.Stream(channels=2, callback=callback):
    sd.sleep(duration * 1000)

Same thing with sounddevice.RawStream:

import sounddevice as sd
duration = 5  # seconds

def callback(indata, outdata, frames, time, status):
    if status:
        print(status, flush=True)
    outdata[:] = indata

with sd.RawStream(channels=2, dtype='int24', callback=callback):
    sd.sleep(duration * 1000)

Blocking Read/Write Streams

Instead of using a callback function, you can also use the blocking methods sounddevice.Stream.read() and sounddevice.Stream.write() (and of course the corresponding methods in sounddevice.InputStream, sounddevice.OutputStream, sounddevice.RawStream, sounddevice.RawInputStream and sounddevice.RawOutputStream).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sounddevice-0.3.4.tar.gz (42.1 kB view details)

Uploaded Source

Built Distributions

sounddevice-0.3.4-py2.py3.cp26.cp27.cp32.cp33.cp34.cp35.cp36.pp27.pp32.pp33.pp34.pp35.pp36-none-win_amd64.whl (171.2 kB view details)

Uploaded CPython 2.6 CPython 2.7 CPython 3.2 CPython 3.3 CPython 3.4 CPython 3.5 CPython 3.6 PyPy Python 2 Python 3 Windows x86-64

sounddevice-0.3.4-py2.py3.cp26.cp27.cp32.cp33.cp34.cp35.cp36.pp27.pp32.pp33.pp34.pp35.pp36-none-win32.whl (168.3 kB view details)

Uploaded CPython 2.6 CPython 2.7 CPython 3.2 CPython 3.3 CPython 3.4 CPython 3.5 CPython 3.6 PyPy Python 2 Python 3 Windows x86

sounddevice-0.3.4-py2.py3.cp26.cp27.cp32.cp33.cp34.cp35.cp36.pp27.pp32.pp33.pp34.pp35.pp36-none-macosx_10_6_x86_64.whl (72.1 kB view details)

Uploaded CPython 2.6 CPython 2.7 CPython 3.2 CPython 3.3 CPython 3.4 CPython 3.5 CPython 3.6 PyPy Python 2 Python 3 macOS 10.6+ x86-64

sounddevice-0.3.4-py2.py3-none-any.whl (30.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file sounddevice-0.3.4.tar.gz.

File metadata

  • Download URL: sounddevice-0.3.4.tar.gz
  • Upload date:
  • Size: 42.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for sounddevice-0.3.4.tar.gz
Algorithm Hash digest
SHA256 f6c4120357c1458b23bd0d466c66808efdefad397bf97b1162600d079d4665ae
MD5 63952b517549c9aae6d5100503e52eb1
BLAKE2b-256 04ed94d3a65081f7740f36a697f43f4400f485c2496d08e0743d81ac75e37bd5

See more details on using hashes here.

File details

Details for the file sounddevice-0.3.4-py2.py3.cp26.cp27.cp32.cp33.cp34.cp35.cp36.pp27.pp32.pp33.pp34.pp35.pp36-none-win_amd64.whl.

File metadata

File hashes

Hashes for sounddevice-0.3.4-py2.py3.cp26.cp27.cp32.cp33.cp34.cp35.cp36.pp27.pp32.pp33.pp34.pp35.pp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 e7abe3e6c38786ca351efceb819d2ced4bfb840d8f989b35dc1d93006ec35d99
MD5 9fb648a1074f555ac7f4b197e0b8dd7e
BLAKE2b-256 d843544d47a91bec6dd7b092e11945b27383fc4c9ae07b8b43fb8c4add9c6c59

See more details on using hashes here.

File details

Details for the file sounddevice-0.3.4-py2.py3.cp26.cp27.cp32.cp33.cp34.cp35.cp36.pp27.pp32.pp33.pp34.pp35.pp36-none-win32.whl.

File metadata

File hashes

Hashes for sounddevice-0.3.4-py2.py3.cp26.cp27.cp32.cp33.cp34.cp35.cp36.pp27.pp32.pp33.pp34.pp35.pp36-none-win32.whl
Algorithm Hash digest
SHA256 6f3d466af0b897e9a6c3350c4425989ac0b08de96976042c9d578c430555fe78
MD5 fdaa618e259f54daec3e92ddb663e88c
BLAKE2b-256 ba056db9e4727edc140ac4e72df9d67a9e62c442ad160cc38dee9977b49962a8

See more details on using hashes here.

File details

Details for the file sounddevice-0.3.4-py2.py3.cp26.cp27.cp32.cp33.cp34.cp35.cp36.pp27.pp32.pp33.pp34.pp35.pp36-none-macosx_10_6_x86_64.whl.

File metadata

File hashes

Hashes for sounddevice-0.3.4-py2.py3.cp26.cp27.cp32.cp33.cp34.cp35.cp36.pp27.pp32.pp33.pp34.pp35.pp36-none-macosx_10_6_x86_64.whl
Algorithm Hash digest
SHA256 63930334bf64cc6a2809a5ba7f3601702aaf0704b946262b3f48940761849d30
MD5 5b2075131b74241bd8837171d53d748b
BLAKE2b-256 32718492f00668af23a0e52768a00ab09c71888a1e19f2b5f17e75b049309e3c

See more details on using hashes here.

File details

Details for the file sounddevice-0.3.4-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for sounddevice-0.3.4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 0bd5893767c4b7dab0276812c10b875d15c195e41c953e7dc0d5210561c97712
MD5 017e73c3ab8f30f304aae4b2de6a667a
BLAKE2b-256 6c07b64c68f475d53f0a40c78c790a7f386801b365d568dcd6a004ce2c4524a2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page