Skip to main content

Software for the Practical Analysis of Materials

Project description

https://img.shields.io/badge/license-GPLv3-blue.svg https://gricad-gitlab.univ-grenoble-alpes.fr/ttk/spam/badges/master/pipeline.svg https://gricad-gitlab.univ-grenoble-alpes.fr/ttk/spam/badges/master/coverage.svg https://badge.fury.io/py/spam.svg https://joss.theoj.org/papers/10.21105/joss.02286/status.svg

Spam is a piece of Python software built upon NumPy and SciPy for the analysis and manipulation of 3D and 2D data sets in material science, be they from x-ray tomography, random fields or any other source.

A number of common functions are provided that are either lacking or slow in Numpy and Scipy, which are expected to be used by users within new python scripts. These functions are in the tools/ directory, and include tools to work with random fields, morphological operations, digital image correlation, and labelled images. Some of spam’s functions transparently call C/C++ functions for speed.

Some user-callable scipts are also provided – they are more complex pieces of code that combine a number of functions and which have a command-line interface. For the moment the scripts are 3 different image correlation techniques.

Please have a look at our online documentation for:

If you find bugs, need help, or want to talk to the developers, we use a element.io/matrix.org chat room for organisation, please join it here and come and talk to us – it is easy, there is a chat client that can run in your web broswer. All you need to do is choose a user name!

Changelog

Version

Date

Notes

Version 0.6.0

2021-05-04

Massive rewrite of image correlation scripts, introduction of spam-pixelSearchPropagate, spam-filterPhiField, spam-passPhiField. The spam-pixelSearch is now separate from spam-ldic and spam-ddic, and works both in grid and labelled mode. Please check out new script documentation for a flowchart of how these should be used in series. Loads of scripts and quite a few functions are now multiprocess, and MPI parallelisation is completely dropped along with mpi4py. pygmsh dependency is also now dropped

Version 0.5.3.4

2021-03-19

Last version to support python 3.5. Update gradient option in spam-ldic, new function to generate pixelated spheroids: spam.kalisphera.makeBlurryNoisySpheroid()

Version 0.5.3.3

2020-11-27

spam-reg script, spam-ereg-discrete writing fix, spam-ldic update gradient option, implementation of Geers in 2D

Version 0.5.3.2

2020-10-27

spam-ereg-discrete mask option reinstated, many fixes for spam-ldic and registerMultiscale() for 2D images

Version 0.5.3.1

2020-10-23

spam-ereg-discrete make safer with slicePadded and moveGrains now renamed to moveLabels and proposed as function with erodeLabels

Version 0.5.3

2020-10-07

Improvements in edge cases in spam-ldic and spam-ddic, thanks to a helper function called spam.helpers.slicePadded(). New debug mode for spam-ddic as well as a graphical tool to manually align labels called spam-ereg-discrete

Version 0.5.2.1

2020-07-20

This is the version in the JOSS paper. Making python 3.8 package for PyPI, along with classifiers. Python 2.7 dropped

Version 0.5.2

2020-06-03

Big improvements in spam-mmr and spam-mmr-graphical, all TSVs im1->im2 and gradients always computed in im2

Version 0.5.1.5

2020-05-28

Don’t recompute Jacobian in register if not needed. Safety in pixel search

Version 0.5.1.4

2020-05-16

Fix spam-deformImageFromField, C++14

Version 0.5.1.3

2020-04-20

Fix spam-mmr and improvements to pixel search in spam-ddic

Version 0.5.1.2

2020-04-20

Fix and test for large initial guesses in register(), spam-mmr-graphical revived

Version 0.5.1.1

2020-04-08

Fix for running spam-ldic for pixel search

Version 0.5.1

2020-04-07

Fix for running spam-ddic with mpi, implementation of S. Brisard’s Directional Erosion

Version 0.5.0

2020-03-27

Big rename of scripts, functions, variables, parameters, with some backwards compatibility in TSV file reading. Some examples:

  • spam.correlate.lucasKanade -> spam.correlate.register

  • spam.helpers.readTSV -> spam.helpers.readCorrelationTSV

New framework for the calculation of strains, where the computation of F is separated from its decomposition. Output fields from correlation with prefixes “SubPix” and “SubPixel” become prefixless In TSV outputs from correlation the components like “F12” are now called “Fzy”

Version 0.4.3

2020-01-16

Various fixes to graphical clients (able to save TSV from spam-mmr-graphical and do a last, precise run with spam-mmr). Improvement to triangulation (now with CGAL alpha shapes) and discrete strain calculator (tested results)

Version 0.4.2

2019-09-25

spam-mmr-graphical now working, improvements in spam-mmr.

Version 0.4.1

2019-09-13

spam-mmr-graphical now working (c-python type error). Various bugfixes in clients. spam-ITKwatershed now accepts markers

Version 0.4.0

2019-07-18

c++ now bound with pybind11. New graphical script spam-mmr-graphical for multi-modal registration. New graphical script spam-ereg for eye (manual) registration. Python3 upgrade recommended for all users

Version 0.3.3.1

2019-05-27

Binning 2^31 fix, remove lines for immediate prints that are not py3 compatible First version with CGAL triangulation

Version 0.3.2.1

2019-05-14

Update pip documentation and changelog

Version 0.3.2

2019-04-30

Fix segfault with images larger than 2^31 voxels, and output both subtracted and original fields in spam-ldic

Version 0.3.1

2019-04-08

Fix a number of forgotten spam.DIC.transformationOperator functions

Version 0.3.0

2019-03-28

Consistent naming in DIC: Phi is 4x4 homogeneous deformation function and F is its internal 3x3 displacement gradient

Version 0.2.2.2

2019-03-21

First version on pip with complete dependencies. This version of spam runs fully in a venv with pip install spam

Version 0.2.2.1

2019-03-20

Pull in requirements.txt into setup.py automatically. This aligns the build from git with the build from pip.

Version 0.2.2

2019-02-21

Approximate python3 compatibility

Version 0.2.1

2019-02-18

Add PyPI documentation to pip in RST

Version 0.2.0

2019-02-18

Add PyPI documentation to README.rst to appear on pip. Note that the build status and coverage badges won’t appear until access to gitlab is opened

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

spam-0.6.0.0-cp38-cp38-manylinux2014_x86_64.whl (26.0 MB view details)

Uploaded CPython 3.8

spam-0.6.0.0-cp37-cp37m-manylinux2014_x86_64.whl (25.8 MB view details)

Uploaded CPython 3.7m

spam-0.6.0.0-cp36-cp36m-manylinux2014_x86_64.whl (25.8 MB view details)

Uploaded CPython 3.6m

File details

Details for the file spam-0.6.0.0-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

  • Download URL: spam-0.6.0.0-cp38-cp38-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 26.0 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.8

File hashes

Hashes for spam-0.6.0.0-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 865b1cf31e7451fc09bc3266a6533b4f46a1d1a953b8eefd101ddc6a37d8921f
MD5 1ac46fee84e23bb12d4bce54b9205369
BLAKE2b-256 f7f3250dcee33378046aeb65d8ced2d71a591c19fcc0618f24559501bcfb8c8d

See more details on using hashes here.

File details

Details for the file spam-0.6.0.0-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: spam-0.6.0.0-cp37-cp37m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 25.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.8

File hashes

Hashes for spam-0.6.0.0-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 29cc6df4f506846d1d1eb00c6642ac8424a003c54e74b5a4e8ffebaffa4b2c90
MD5 ffa436c9eccad3674549f4a7898a4aa9
BLAKE2b-256 e7a1e6cd67c6bc30415595cff5386a19d0798c0f502512ce849c79c5eeee87b5

See more details on using hashes here.

File details

Details for the file spam-0.6.0.0-cp36-cp36m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: spam-0.6.0.0-cp36-cp36m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 25.8 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.8

File hashes

Hashes for spam-0.6.0.0-cp36-cp36m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a8c22a02f86dc76b6d70b6edf54f30e524961f62df61991b0ca35e9af0c9a0a3
MD5 32be33cfec31d3db47456a6cd39b4958
BLAKE2b-256 a13010daff1b3ec690ca1dfea1004b1e5ddc0062f1ea2568cec73b844e9a9765

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page