spatial-image-multiscale
Project description
spatial-image-multiscale
Generate a multiscale, chunked, multi-dimensional spatial image data structure that can serialized to OME-NGFF.
Each scale is a scientific Python Xarray spatial-image Dataset, organized into nodes of an Xarray Datatree.
Installation
pip install spatial_image_multiscale
Usage
import numpy as np
from spatial_image import to_spatial_image
from spatial_image_multiscale import to_multiscale
import zarr
# Image pixels
array = np.random.randint(0, 256, size=(128,128), dtype=np.uint8)
image = to_spatial_image(array)
print(image)
An Xarray spatial-image DataArray. Spatial metadata can also be passed during construction.
<xarray.SpatialImage 'image' (y: 128, x: 128)>
array([[114, 47, 215, ..., 245, 14, 175],
[ 94, 186, 112, ..., 42, 96, 30],
[133, 170, 193, ..., 176, 47, 8],
...,
[202, 218, 237, ..., 19, 108, 135],
[ 99, 94, 207, ..., 233, 83, 112],
[157, 110, 186, ..., 142, 153, 42]], dtype=uint8)
Coordinates:
* y (y) float64 0.0 1.0 2.0 3.0 4.0 ... 123.0 124.0 125.0 126.0 127.0
* x (x) float64 0.0 1.0 2.0 3.0 4.0 ... 123.0 124.0 125.0 126.0 127.0
# Create multiscale pyramid, downscaling by a factor of 2, then 4
multiscale = to_multiscale(image, [2, 4])
print(multiscale)
A chunked Dask Array MultiscaleSpatialImage Xarray Datatree.
DataTree('multiscales', parent=None)
├── DataTree('scale0')
│ Dimensions: (y: 128, x: 128)
│ Coordinates:
│ * y (y) float64 0.0 1.0 2.0 3.0 4.0 ... 123.0 124.0 125.0 126.0 127.0
│ * x (x) float64 0.0 1.0 2.0 3.0 4.0 ... 123.0 124.0 125.0 126.0 127.0
│ Data variables:
│ image (y, x) uint8 dask.array<chunksize=(128, 128), meta=np.ndarray>
├── DataTree('scale1')
│ Dimensions: (y: 64, x: 64)
│ Coordinates:
│ * y (y) float64 0.5 2.5 4.5 6.5 8.5 ... 118.5 120.5 122.5 124.5 126.5
│ * x (x) float64 0.5 2.5 4.5 6.5 8.5 ... 118.5 120.5 122.5 124.5 126.5
│ Data variables:
│ image (y, x) uint8 dask.array<chunksize=(64, 64), meta=np.ndarray>
└── DataTree('scale2')
Dimensions: (y: 16, x: 16)
Coordinates:
* y (y) float64 3.5 11.5 19.5 27.5 35.5 ... 91.5 99.5 107.5 115.5 123.5
* x (x) float64 3.5 11.5 19.5 27.5 35.5 ... 91.5 99.5 107.5 115.5 123.5
Data variables:
image (y, x) uint8 dask.array<chunksize=(16, 16), meta=np.ndarray>
Store as an Open Microscopy Environment-Next Generation File Format (OME-NGFF) Zarr store.
It is highly recommended to use dimension_separator='/'
in the construction of the Zarr stores.
store = zarr.storage.DirectoryStore('multiscale.zarr', dimension_separator='/')
multiscale.to_zarr(store)
Examples
Development
Contributions are welcome and appreciated.
To run the test suite:
git clone https://github.com/spatial-image/spatial-image-multiscale
cd spatial-image-multiscale
pip install -e '.[test]'
cid=$(grep 'IPFS_CID =' test/test_spatial_image_multiscale.py | cut -d ' ' -f 3 | tr -d '"')
# Needs ipfs, e.g. https://docs.ipfs.io/install/ipfs-desktop/
ipfs get -o ./test/data -- $cid
pytest
# Notebook tests
pytest --nbmake --nbmake-timeout=3000 examples/*ipynb
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file spatial_image_multiscale-0.4.0.tar.gz
.
File metadata
- Download URL: spatial_image_multiscale-0.4.0.tar.gz
- Upload date:
- Size: 103.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: python-requests/2.27.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7c18735b0c8fe6c7c4944f1495de77db2dd50a35a98e09619c337f0e1a06b2e1 |
|
MD5 | 9e308b3c50c08f42192cd52664b3f4d9 |
|
BLAKE2b-256 | 0fd4be3dc2d9b21e12f7748f42bbcde52ee5e6b72d5da6f0ed6c8da701bed0ed |
File details
Details for the file spatial_image_multiscale-0.4.0-py2.py3-none-any.whl
.
File metadata
- Download URL: spatial_image_multiscale-0.4.0-py2.py3-none-any.whl
- Upload date:
- Size: 10.6 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: python-requests/2.27.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e7acc0ec82ddece976ea3b8f334866e3c698b0c144d33b7e198886134f38d16a |
|
MD5 | c8bd60cdf6f9581fabbdcc489b35d5b5 |
|
BLAKE2b-256 | 2b56a4270530ffefa5ef603142a670ef0d4191a1f6f19409d4140cb7390ebd26 |