Skip to main content

spatial-image-multiscale

Project description

⚠️ Renamed to multiscale-spatial-image

spatial-image-multiscale

Test Notebook tests image image DOI

Generate a multiscale, chunked, multi-dimensional spatial image data structure that can serialized to OME-NGFF.

Each scale is a scientific Python Xarray spatial-image Dataset, organized into nodes of an Xarray Datatree.

Installation

pip install spatial_image_multiscale

Usage

import numpy as np
from spatial_image import to_spatial_image
from spatial_image_multiscale import to_multiscale
import zarr

# Image pixels
array = np.random.randint(0, 256, size=(128,128), dtype=np.uint8)

image = to_spatial_image(array)
print(image)

An Xarray spatial-image DataArray. Spatial metadata can also be passed during construction.

<xarray.SpatialImage 'image' (y: 128, x: 128)>
array([[114,  47, 215, ..., 245,  14, 175],
       [ 94, 186, 112, ...,  42,  96,  30],
       [133, 170, 193, ..., 176,  47,   8],
       ...,
       [202, 218, 237, ...,  19, 108, 135],
       [ 99,  94, 207, ..., 233,  83, 112],
       [157, 110, 186, ..., 142, 153,  42]], dtype=uint8)
Coordinates:
  * y        (y) float64 0.0 1.0 2.0 3.0 4.0 ... 123.0 124.0 125.0 126.0 127.0
  * x        (x) float64 0.0 1.0 2.0 3.0 4.0 ... 123.0 124.0 125.0 126.0 127.0
# Create multiscale pyramid, downscaling by a factor of 2, then 4
multiscale = to_multiscale(image, [2, 4])
print(multiscale)

A chunked Dask Array MultiscaleSpatialImage Xarray Datatree.

DataTree('multiscales', parent=None)
├── DataTree('scale0')
│   Dimensions:  (y: 128, x: 128)
│   Coordinates:
│     * y        (y) float64 0.0 1.0 2.0 3.0 4.0 ... 123.0 124.0 125.0 126.0 127.0
│     * x        (x) float64 0.0 1.0 2.0 3.0 4.0 ... 123.0 124.0 125.0 126.0 127.0
│   Data variables:
│       image    (y, x) uint8 dask.array<chunksize=(128, 128), meta=np.ndarray>
├── DataTree('scale1')
│   Dimensions:  (y: 64, x: 64)
│   Coordinates:
│     * y        (y) float64 0.5 2.5 4.5 6.5 8.5 ... 118.5 120.5 122.5 124.5 126.5
│     * x        (x) float64 0.5 2.5 4.5 6.5 8.5 ... 118.5 120.5 122.5 124.5 126.5
│   Data variables:
│       image    (y, x) uint8 dask.array<chunksize=(64, 64), meta=np.ndarray>
└── DataTree('scale2')
    Dimensions:  (y: 16, x: 16)
    Coordinates:
      * y        (y) float64 3.5 11.5 19.5 27.5 35.5 ... 91.5 99.5 107.5 115.5 123.5
      * x        (x) float64 3.5 11.5 19.5 27.5 35.5 ... 91.5 99.5 107.5 115.5 123.5
    Data variables:
        image    (y, x) uint8 dask.array<chunksize=(16, 16), meta=np.ndarray>

Store as an Open Microscopy Environment-Next Generation File Format (OME-NGFF) / netCDF Zarr store.

It is highly recommended to use dimension_separator='/' in the construction of the Zarr stores.

store = zarr.storage.DirectoryStore('multiscale.zarr', dimension_separator='/')
multiscale.to_zarr(store)

Examples

Development

Contributions are welcome and appreciated.

To run the test suite:

git clone https://github.com/spatial-image/spatial-image-multiscale
cd spatial-image-multiscale
pip install -e ".[test]"
cid=$(grep 'IPFS_CID =' test/test_spatial_image_multiscale.py | cut -d ' ' -f 3 | tr -d '"')
# Needs ipfs, e.g. https://docs.ipfs.io/install/ipfs-desktop/
ipfs get -o ./test/data -- $cid
pytest
# Notebook tests
pytest --nbmake --nbmake-timeout=3000 examples/*ipynb

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spatial_image_multiscale-0.4.2.tar.gz (573.0 kB view details)

Uploaded Source

Built Distribution

spatial_image_multiscale-0.4.2-py2.py3-none-any.whl (10.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file spatial_image_multiscale-0.4.2.tar.gz.

File metadata

File hashes

Hashes for spatial_image_multiscale-0.4.2.tar.gz
Algorithm Hash digest
SHA256 b77f25193c342ea85945e10615a724f6f90ec56639e11ce03f4042129da0630a
MD5 68c43b32a813787d524e357c5ac8b69c
BLAKE2b-256 d90dd290b061740b498cb7ab22aa6e0290318678a0a0b0a1eef9a6b04f52edc9

See more details on using hashes here.

File details

Details for the file spatial_image_multiscale-0.4.2-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for spatial_image_multiscale-0.4.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 928ab79e8232322a128f0d8a52c0f2eadf140e98cc6dadfc5095fc309dcb47be
MD5 5d6ddf4a7ef4116e4773dfb77a0d7955
BLAKE2b-256 dd4d3ac05767e897cd800c57bf7baeed85e1086926d17a96e8c9cf7628395fda

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page