Skip to main content

Package for calculating and visualising confidence intervals, e.g. for A/B test analysis.

Project description

Spotify Confidence

Status Latest release Python Python

Python library for AB test analysis.

Why use Spotify Confidence?

Spotify Confidence provides convinience wrappers around statsmodel's various functions for computing p-values and confidence intervalls. With Spotify Confidence it's easy to compute several p-values and confidence bounds in one go, e.g. one for each country or for each date. Each function comes in two versions:

  • one that return a pandas dataframe,
  • one that returns a Chartify chart.

Spotify Confidence has support calculating p-values and confidence intervals using Z-statistics, Student's T-statistics (or more exactly Welch's T-test), as well as Chi-squared statistics.

There is also a Bayesian alternative in the BetaBinomial class.

Examples

import spotify_confidence as confidence
import pandas as pd

data = pd.DataFrame(
    {'variation_name': ['treatment1', 'control', 'treatment2', 'treatment3'],
     'success': [50, 40, 10, 20],
     'total': [100, 100, 50, 60]
    }
)

test = confidence.ZTest(
    data,
    numerator_column='success',
    numerator_sum_squares_column=None,
    denominator_column='total',
    categorical_group_columns='variation_name',
    correction_method='bonferroni')
    
test.summary()
test.difference(level_1='control', level_2='treatment1')
test.multiple_difference(level='control', level_as_reference=True)

test.summary_plot().show()
test.difference_plot(level_1='control', level_2='treatment1').show()
test.multiple_difference_plot(level='control', level_as_reference=True).show()

See jupyter notebooks in examples folder for more complete examples.

Installation

Spotify Confidence can be installed via pip:

pip install spotify-confidence

Find the latest release version here

Code of Conduct

This project adheres to the Open Code of Conduct By participating, you are expected to honor this code.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spotify-confidence-2.3.0.tar.gz (3.6 MB view details)

Uploaded Source

Built Distribution

spotify_confidence-2.3.0-py3-none-any.whl (63.8 kB view details)

Uploaded Python 3

File details

Details for the file spotify-confidence-2.3.0.tar.gz.

File metadata

  • Download URL: spotify-confidence-2.3.0.tar.gz
  • Upload date:
  • Size: 3.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.6.9

File hashes

Hashes for spotify-confidence-2.3.0.tar.gz
Algorithm Hash digest
SHA256 a25eb64b35b80c520f613e39c8b4a503c8d8d90b9396d9db026cd5edd4fe76a0
MD5 61b1d4f0b63e8cbfa03ab089e8234ef9
BLAKE2b-256 acab05e3398b4e4a0a69ba63a2610c5fe4dc8b30925bd6382312172ea38f63ab

See more details on using hashes here.

File details

Details for the file spotify_confidence-2.3.0-py3-none-any.whl.

File metadata

  • Download URL: spotify_confidence-2.3.0-py3-none-any.whl
  • Upload date:
  • Size: 63.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.6.9

File hashes

Hashes for spotify_confidence-2.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8b05176a875efb6e39ba08c4ebd56ce7de45a433e87d88fedf70798797da2e85
MD5 7620a138c14906c6a3161eb6491302b2
BLAKE2b-256 70cce182f6e68283ef9ba1a30ef8dc82451ce138184acafa1959529cd472128e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page