Skip to main content

Package for calculating and visualising confidence intervals, e.g. for A/B test analysis.

Project description

Spotify Confidence

Status Latest release Python Python

Python library for AB test analysis.

Why use Spotify Confidence?

Spotify Confidence provides convinience wrappers around statsmodel's various functions for computing p-values and confidence intervalls. With Spotify Confidence it's easy to compute several p-values and confidence bounds in one go, e.g. one for each country or for each date. Each function comes in two versions:

  • one that return a pandas dataframe,
  • one that returns a Chartify chart.

Spotify Confidence has support calculating p-values and confidence intervals using Z-statistics, Student's T-statistics (or more exactly Welch's T-test), as well as Chi-squared statistics.

There is also a Bayesian alternative in the BetaBinomial class.

Examples

import spotify_confidence as confidence
import pandas as pd

data = pd.DataFrame(
    {'variation_name': ['treatment1', 'control', 'treatment2', 'treatment3'],
     'success': [50, 40, 10, 20],
     'total': [100, 100, 50, 60]
    }
)

test = confidence.ZTest(
    data,
    numerator_column='success',
    numerator_sum_squares_column=None,
    denominator_column='total',
    categorical_group_columns='variation_name',
    correction_method='bonferroni')
    
test.summary()
test.difference(level_1='control', level_2='treatment1')
test.multiple_difference(level='control', level_as_reference=True)

test.summary_plot().show()
test.difference_plot(level_1='control', level_2='treatment1').show()
test.multiple_difference_plot(level='control', level_as_reference=True).show()

See jupyter notebooks in examples folder for more complete examples.

Installation

Spotify Confidence can be installed via pip:

pip install spotify-confidence

Find the latest release version here

Code of Conduct

This project adheres to the Open Code of Conduct By participating, you are expected to honor this code.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spotify-confidence-2.3.7.tar.gz (3.6 MB view details)

Uploaded Source

Built Distribution

spotify_confidence-2.3.7-py3-none-any.whl (64.8 kB view details)

Uploaded Python 3

File details

Details for the file spotify-confidence-2.3.7.tar.gz.

File metadata

  • Download URL: spotify-confidence-2.3.7.tar.gz
  • Upload date:
  • Size: 3.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.6.9

File hashes

Hashes for spotify-confidence-2.3.7.tar.gz
Algorithm Hash digest
SHA256 1a57bd05ad0abd7d6583e61380a09645c42e894057e08ec64caa41143c63cbaf
MD5 f4d71ecce687475f581305d444a94d5c
BLAKE2b-256 94779b639e3938151db5156b2579b05b2dd6e7d983b11d8712ab4cfa39513ec8

See more details on using hashes here.

File details

Details for the file spotify_confidence-2.3.7-py3-none-any.whl.

File metadata

  • Download URL: spotify_confidence-2.3.7-py3-none-any.whl
  • Upload date:
  • Size: 64.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.6.9

File hashes

Hashes for spotify_confidence-2.3.7-py3-none-any.whl
Algorithm Hash digest
SHA256 e4b485dd0f388ce564d3015f04fd81eb80c8bccfae94d94eb0ae8e986584198e
MD5 7d472bff7aa9f54d0cf12d26f361efa8
BLAKE2b-256 38fd154bd60d3fb416976239a5ec2f2a0c129f95757e3e551d621679e9272dfd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page