Skip to main content

Package for calculating and visualising confidence intervals, e.g. for A/B test analysis.

Project description

Spotify Confidence

Status Latest release Python Python

Python library for AB test analysis.

Why use Spotify Confidence?

Spotify Confidence provides convinience wrappers around statsmodel's various functions for computing p-values and confidence intervalls. With Spotify Confidence it's easy to compute several p-values and confidence bounds in one go, e.g. one for each country or for each date. Each function comes in two versions:

  • one that return a pandas dataframe,
  • one that returns a Chartify chart.

Spotify Confidence has support calculating p-values and confidence intervals using Z-statistics, Student's T-statistics (or more exactly Welch's T-test), as well as Chi-squared statistics.

There is also a Bayesian alternative in the BetaBinomial class.

Examples

import spotify_confidence as confidence
import pandas as pd

data = pd.DataFrame(
    {'variation_name': ['treatment1', 'control', 'treatment2', 'treatment3'],
     'success': [50, 40, 10, 20],
     'total': [100, 100, 50, 60]
    }
)

test = confidence.ZTest(
    data,
    numerator_column='success',
    numerator_sum_squares_column=None,
    denominator_column='total',
    categorical_group_columns='variation_name',
    correction_method='bonferroni')
    
test.summary()
test.difference(level_1='control', level_2='treatment1')
test.multiple_difference(level='control', level_as_reference=True)

test.summary_plot().show()
test.difference_plot(level_1='control', level_2='treatment1').show()
test.multiple_difference_plot(level='control', level_as_reference=True).show()

See jupyter notebooks in examples folder for more complete examples.

Installation

Spotify Confidence can be installed via pip:

pip install spotify-confidence

Find the latest release version here

Code of Conduct

This project adheres to the Open Code of Conduct By participating, you are expected to honor this code.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spotify-confidence-2.4.1.tar.gz (73.7 kB view details)

Uploaded Source

Built Distribution

spotify_confidence-2.4.1-py3-none-any.whl (72.7 kB view details)

Uploaded Python 3

File details

Details for the file spotify-confidence-2.4.1.tar.gz.

File metadata

  • Download URL: spotify-confidence-2.4.1.tar.gz
  • Upload date:
  • Size: 73.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.2

File hashes

Hashes for spotify-confidence-2.4.1.tar.gz
Algorithm Hash digest
SHA256 109e612ede1a1f90a68630d953065aa8d791a91b506b56ae4ff18cb7b27ce887
MD5 833cc5f8650da59fd86e669b625bb6c6
BLAKE2b-256 865994808b41ffe2315367543a787f42fb6d22685478caabb1d155b243d1db05

See more details on using hashes here.

File details

Details for the file spotify_confidence-2.4.1-py3-none-any.whl.

File metadata

  • Download URL: spotify_confidence-2.4.1-py3-none-any.whl
  • Upload date:
  • Size: 72.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.2

File hashes

Hashes for spotify_confidence-2.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 7205186d4e1cba06885e0e47f538752130c2da11ff8621c4cc14d0321844a172
MD5 d3299ef08f62d1bdb4480671772335fa
BLAKE2b-256 3bf44a76abd48a24a9c6185be4dd90beb48375efdacf6c78e4831fb4c4dc7b3b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page