Skip to main content

Package for calculating and visualising confidence intervals, e.g. for A/B test analysis.

Project description

Spotify Confidence

Status Latest release Python Python

Python library for AB test analysis.

Why use Spotify Confidence?

Spotify Confidence provides convinience wrappers around statsmodel's various functions for computing p-values and confidence intervalls. With Spotify Confidence it's easy to compute several p-values and confidence bounds in one go, e.g. one for each country or for each date. Each function comes in two versions:

  • one that return a pandas dataframe,
  • one that returns a Chartify chart.

Spotify Confidence has support calculating p-values and confidence intervals using Z-statistics, Student's T-statistics (or more exactly Welch's T-test), as well as Chi-squared statistics.

There is also a Bayesian alternative in the BetaBinomial class.

Examples

import spotify_confidence as confidence
import pandas as pd

data = pd.DataFrame(
    {'variation_name': ['treatment1', 'control', 'treatment2', 'treatment3'],
     'success': [50, 40, 10, 20],
     'total': [100, 100, 50, 60]
    }
)

test = confidence.ZTest(
    data,
    numerator_column='success',
    numerator_sum_squares_column=None,
    denominator_column='total',
    categorical_group_columns='variation_name',
    correction_method='bonferroni')
    
test.summary()
test.difference(level_1='control', level_2='treatment1')
test.multiple_difference(level='control', level_as_reference=True)

test.summary_plot().show()
test.difference_plot(level_1='control', level_2='treatment1').show()
test.multiple_difference_plot(level='control', level_as_reference=True).show()

See jupyter notebooks in examples folder for more complete examples.

Installation

Spotify Confidence can be installed via pip:

pip install spotify-confidence

Find the latest release version here

Code of Conduct

This project adheres to the Open Code of Conduct By participating, you are expected to honor this code.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spotify-confidence-2.6.1.tar.gz (89.9 kB view details)

Uploaded Source

Built Distribution

spotify_confidence-2.6.1-py3-none-any.whl (80.1 kB view details)

Uploaded Python 3

File details

Details for the file spotify-confidence-2.6.1.tar.gz.

File metadata

  • Download URL: spotify-confidence-2.6.1.tar.gz
  • Upload date:
  • Size: 89.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.2

File hashes

Hashes for spotify-confidence-2.6.1.tar.gz
Algorithm Hash digest
SHA256 5d3f37c500a545cb066cd2955bdb045e98515dde3c4b553d2fe7724905768b9c
MD5 0aaa63d6a4a1040eeee8c5e63aaf89a1
BLAKE2b-256 0e303e45566d50c9f853b9ffb7248058560a2ca531c484bfe9224748380d8cbd

See more details on using hashes here.

File details

Details for the file spotify_confidence-2.6.1-py3-none-any.whl.

File metadata

  • Download URL: spotify_confidence-2.6.1-py3-none-any.whl
  • Upload date:
  • Size: 80.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.2

File hashes

Hashes for spotify_confidence-2.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9e26cac1e0f0c06d04f169271056c0491d7c79bdaa7595da91006edea8445492
MD5 60f233ffac50b050b3af8bab32bbae2c
BLAKE2b-256 255ac7c9dc5b3f3795f5c6fd18e3eeb8e29c18cfa3c921ba519cbd9cbd534be4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page