Async support for SQLAlchemy.
Project description
sqlalchemy_aio adds asyncio and Trio support to SQLAlchemy core, derived from alchimia.
Getting started
import asyncio
from sqlalchemy_aio import ASYNCIO_STRATEGY
from sqlalchemy import (
Column, Integer, MetaData, Table, Text, create_engine, select)
from sqlalchemy.schema import CreateTable, DropTable
async def main():
engine = create_engine(
# In-memory sqlite database cannot be accessed from different
# threads, use file.
'sqlite:///test.db', strategy=ASYNCIO_STRATEGY
)
metadata = MetaData()
users = Table(
'users', metadata,
Column('id', Integer, primary_key=True),
Column('name', Text),
)
# Create the table
await engine.execute(CreateTable(users))
conn = await engine.connect()
# Insert some users
await conn.execute(users.insert().values(name='Jeremy Goodwin'))
await conn.execute(users.insert().values(name='Natalie Hurley'))
await conn.execute(users.insert().values(name='Dan Rydell'))
await conn.execute(users.insert().values(name='Casey McCall'))
await conn.execute(users.insert().values(name='Dana Whitaker'))
result = await conn.execute(users.select(users.c.name.startswith('D')))
d_users = await result.fetchall()
await conn.close()
# Print out the users
for user in d_users:
print('Username: %s' % user[users.c.name])
# Supports context async managers
async with engine.connect() as conn:
async with conn.begin() as trans:
assert await conn.scalar(select([1])) == 1
await engine.execute(DropTable(users))
if __name__ == '__main__':
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
Getting started with Trio
To use the above example with Trio, just change the following:
import trio
from sqlalchemy_aio import TRIO_STRATEGY
async def main():
engine = create_engine('sqlite:///test.db', strategy=TRIO_STRATEGY)
...
trio.run(main)
What is this?
It’s not an asyncio implementation of SQLAlchemy or the drivers it uses. sqlalchemy_aio lets you use SQLAlchemy by running operations in a separate thread.
If you’re already using run_in_executor to execute SQLAlchemy tasks, sqlalchemy_aio will work well with similar performance. If performance is critical, perhaps asyncpg can help.
Documentation
The documentation has more information, including limitations of the API.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
sqlalchemy_aio-0.13.0.tar.gz
(10.7 kB
view hashes)
Built Distribution
Close
Hashes for sqlalchemy_aio-0.13.0-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 717b48eae9534f362f3a1bd86a0b7889ac0900c337cbe870bb76c16d51443ab0 |
|
MD5 | a703264275fe92354fd15363d0ca3a39 |
|
BLAKE2b-256 | 696bc04c5dcf927cb1b15ada48e94e71f0bafde1fa7297b94f3f05aae0935669 |