Skip to main content

A small library that enables capturing SQLAlchemy SQL statements / queries.

Project description

sqlalchemy-capture-sql

A small library that enables capturing SQLAlchemy SQL statements / queries.

Django has django.db.connection.queries connection property that enables user to display executed raw SQL queries (DEBUG mode only). Sometimes in debugging or unit testing this can serve the purpose to check and control nr. and type of sql statements executed for monitored case.

This library provides simple class that enables similar behaviour, but for SQLAlchemy. Each SQL statement is captured along with passed parameters.

How it works

Internally it uses event.listens_for(engine, 'before_cursor_execute' event handler, e.g.:

@event.listens_for(engine, 'before_cursor_execute')
def capture_sa_statement_listener(...)

It simply collects all sql statements sent to event listeer by SQLAlchemy (sent just before execution) and statements are collected in CaptureSqlStatements instance until .finish() method is called (or with ctx is exited).

Additionally it provides time measurement (see REMARKS), stats and formatting functions, see Examples.

REMARKS

Some remarks:

  • There is some "heuristic" duration measurement, i.e. class measures time between 2 captures, it is not actual DB execution time.

  • Capturing type of command and table name is very simple and one should not rely on it.

Tested and developed on Python 3.7+SQLAlchemy 1.3, but I assume it should work on later and probably some previous versions.

Installation

As usual:

pip install sqlalchemy-capture-sql

Usage example

Standard usage is by using python's with statement:

from sqlalchemy_capture_sql import CaptureSqlStatements

with CaptureSqlStatements(sqlalchemy_engine) as capture_stmts:

    # put here calls to functions that issue sqlalchemy commands that
    # produce some sql statements execution, for example factory-boy:
    cpm = FactoryModel.create()

    # call to .finish() automatically done on with ctx exit
capture_stmts.pp()

but standard style works too - finish() needs to be called:

capture_stmts = CaptureSqlStatements(sqlalchemy_engine)

# put here calls to functions that issue sqlalchemy commands that
# produce some sql statements execution, for example factory-boy:
cpm = FactoryModel.create()

# in this case .finish() needs to be called to stop capturing
capture_stmts.finish()

Example use case

This example illustrates use of some raw sqls and ORM objects (inspired by SqlAlchemy 1.3 tutorial):

from sqlalchemy_capture_sql import CaptureSqlStatements
from sqlalchemy import create_engine, text, Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker

Base = declarative_base()

class User(Base):
    __tablename__ = 'users'

    id = Column(Integer, primary_key=True)
    name = Column(String)
    fullname = Column(String)
    nickname = Column(String)


engine = create_engine('sqlite:///:memory:', echo=False)
conn = engine.connect()

Base.metadata.create_all(engine)
Session = sessionmaker(bind=engine)

session = Session()

# This orm operation won't be captured
user1 = User(name='ed', fullname='Ed Jones', nickname='edsnickname')
session.add(user1)
session.commit()

with CaptureSqlStatements(engine) as capture_stmts:
    # All commands within engine executed in this with block will be captured
    joe = User(name='joe', fullname='Joe Joey', nickname='joey')
    session.add(joe)
    session.commit()

    session.query(User).count()

    # one raw sql
    conn.execute(text("select 'In-capture'")).fetchall()

    joe.nickname = "Jo"
    session.commit()

    session.add(User(name='Wrong', fullname='Wrong', nickname='wrong'))
    session.rollback()

    jack = User(name='Jack', fullname='Jackson', nickname='jackie')
    session.add(jack)
    session.commit()

    session.delete(jack)
    session.commit()

# This orm operation won't be captured
session.add(User(name='Mick', fullname='Michael', nickname='mick'))
assert session.query(User).count(), 3

assert capture_stmts.get_counts("by_type"), {'INSERT': 2, 'SELECT': 4, 'UPDATE': 1, 'DELETE': 1}
assert capture_stmts.get_counts("by_table"), {"'IN-CAPTURE'": 1, '(SELECT': 1, 'USERS': 6}
assert capture_stmts.get_counts("by_type_and_table"), {
    'DELETE USERS': 1,
    'INSERT USERS': 2,
    "SELECT 'IN-CAPTURE'": 1,
    'SELECT (SELECT': 1,
    'SELECT USERS': 2,
    'UPDATE USERS': 1}

assert [st.stmt_repr for st in capture_stmts.statements], [
    'INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)',
    'SELECT FROM (SELECT users.id AS users_id, users.name AS users_name, '
        'users.fullname AS users_fullname, users.nickname AS users_nickname \n'
        'FROM users) AS anon_1',
    "select 'In-capture'",
    'SELECT FROM users \nWHERE users.id = ?',
    'UPDATE users SET nickname=? WHERE users.id = ?',
    'INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)',
    'SELECT FROM users \nWHERE users.id = ?',
    'DELETE FROM users WHERE users.id = ?']

Call to pretty-print function:

capture_stmts.pp()

Produces:

============================================================
== NOTE: duration measures time between 2 captures, it is not actual DB execution time.
== Totally captured 8 statement(s) in 0.008866 s:
  1. 0.0020 INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
     <- 'joe+Joe Joey+joey'
  2. 0.0005 SELECT FROM (SELECT users.id AS users_id, users.name AS users_name, us
  3. 0.0010 select 'In-capture'
  4. 0.0009 SELECT FROM users  WHERE users.id = ?
     <- '2'
  5. 0.0013 UPDATE users SET nickname=? WHERE users.id = ?
     <- 'Jo+2'
  6. 0.0014 INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
     <- 'Jack+Jackson+jackie'
  7. 0.0007 SELECT FROM users  WHERE users.id = ?
     <- '3'
  8. 0.0005 DELETE FROM users WHERE users.id = ?
     <- '3'

============================================================
== Slowest (top 5):
      1. INSERT USERS             1   0.002 s INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
      2. INSERT USERS             1   0.001 s INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
      3. UPDATE USERS             1   0.001 s UPDATE users SET nickname=? WHERE users.id = ?
      4. SELECT 'IN-CAPTURE'      1   0.001 s select 'In-capture'
      5. SELECT USERS             1   0.001 s SELECT FROM users
WHERE users.id = ?

============================================================
== By sql command (top 20):
    INSERT               2   0.003 s
    SELECT               4   0.003 s
    UPDATE               1   0.001 s
    DELETE               1   0.001 s

============================================================
== By table (top 20):
    USERS                6   0.007 s
    'IN-CAPTURE'         1   0.001 s
    (SELECT              1   0.000 s

============================================================
== By sql command + table (top 20):
    INSERT USERS             2   0.003 s
    SELECT USERS             2   0.002 s
    UPDATE USERS             1   0.001 s
    SELECT 'IN-CAPTURE'      1   0.001 s
    DELETE USERS             1   0.001 s
    SELECT (SELECT           1   0.000 s

============================================================
== Totally captured 8 statement(s) in 0.008866 s

One can iterate all capture statement objects:

for statement in capture_stmts:
    print(statement.statement)
    print(statement.tst_started)
    print(statement.duration)    # BEWARE: not actual DB execution time, 
                                           Rounded on 2 decimal places.
    print(statement.stmt_repr)   # Dropped list of columns from SELECT
    print(statement.parameters)
    print(statement.executemany) # bool
    print(statement.sql_type)    # BEWARE: do not rely on this
    print(statement.first_table) # BEWARE: do not rely on this

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqlalchemy-capture-sql-0.2.3.tar.gz (7.8 kB view details)

Uploaded Source

Built Distribution

sqlalchemy_capture_sql-0.2.3-py3-none-any.whl (8.5 kB view details)

Uploaded Python 3

File details

Details for the file sqlalchemy-capture-sql-0.2.3.tar.gz.

File metadata

File hashes

Hashes for sqlalchemy-capture-sql-0.2.3.tar.gz
Algorithm Hash digest
SHA256 c5f5039beb23bae973b1ffbf12abacce1212b02c6c22e7d6e0bbf064f1d8ad5d
MD5 0f15e2fc2878d53e71ff649c282626fa
BLAKE2b-256 350cf0158e21d5f82c8c5aa15cf638a04015926bbb9bd8c68b822716a952faad

See more details on using hashes here.

File details

Details for the file sqlalchemy_capture_sql-0.2.3-py3-none-any.whl.

File metadata

File hashes

Hashes for sqlalchemy_capture_sql-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 740bdc7171ee62bed42991c576591a267c12293c723b94d597c4bdea66cdf136
MD5 9387707aad089902fe968ec3c4f66860
BLAKE2b-256 6434fa60a945295a5cc30252e725ae1b3c6ce1be82ec5896bd915ce91a8be569

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page