Skip to main content

A small library that enables capturing SQLAlchemy SQL statements / queries.

Project description

sqlalchemy-capture-sql

sqlalchemy-capture-sql is a library that enables capturing SQLAlchemy SQL statements / queries. Each SQL statement is captured along with passed parameters and approx. duration of execution time. It provides reporting and analysis functionalities, for instance: aggregations by type of sql command, table name, list of slowest queries and so on.

Motivation

Django has django.db.connection.queries connection property that enables user to display executed raw SQL queries (DEBUG mode only). Sometimes in debugging or unit testing this can serve the purpose to check and control number and type of sql statements executed for monitored case, along with allowed duration times. I wanted to create similar functionality for SQLAlchemy and provide additional statistics and analysis functions.

How it works

Internally it uses event.listens_for(engine, 'before_cursor_execute' event handler, e.g.:

@event.listens_for(engine, 'before_cursor_execute')
def capture_sa_statement_listener(...)

It simply collects all sql statements sent to event listener by SQLAlchemy (sent just before execution) and statements are collected in CaptureSqlStatements instance until .finish() method is called (or "with" context is exited).

Additionally it provides time measurement (see REMARKS), stats and formatting functions, see Examples.

REMARKS

Some remarks:

  • duration measurement is not actual DB execution time, system measures time between 2 sql statements captures

  • system tries to detect type of sql command (select, insert, ...) and first referenced table/db-object name, but the logic behind is very simple and one should not rely on it.

Tested and developed on Python 3.7+SQLAlchemy 1.3, but I assume it should work on later and probably some previous versions.

Installation

As usual:

pip install sqlalchemy-capture-sql

Usage example

Standard usage is by using python's with statement:

from sqlalchemy_capture_sql import CaptureSqlStatements

with CaptureSqlStatements(sqlalchemy_engine) as capture_stmts:

    # put here calls to functions that issue sqlalchemy commands that
    # produce some sql statements execution, for example factory-boy:
    cpm = FactoryModel.create()

    # call to .finish() automatically done on with ctx exit
capture_stmts.pp()

but standard style works too - finish() needs to be called:

capture_stmts = CaptureSqlStatements(sqlalchemy_engine)

# put here calls to functions that issue sqlalchemy commands that
# produce some sql statements execution, for example factory-boy:
cpm = FactoryModel.create()

# in this case .finish() needs to be called to stop capturing
capture_stmts.finish()

Calling pretty print function:

capture_stmts.pp()

the library will make full report, for instance:

============================================================
  1. 0.0020 INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
     <- 'joe+Joe Joey+joey'
  2. 0.0009 SELECT FROM users  WHERE users.id = ?
     <- '2'
  ...
============================================================
== Slowest (top 5):
      1. INSERT USERS             1   0.002 s INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
      2. INSERT USERS             1   0.001 s INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
      ...
============================================================
== By sql command (top 20):
    INSERT               2   0.003 s
    SELECT               4   0.003 s
    UPDATE               1   0.001 s
    DELETE               1   0.001 s
============================================================
== By table (top 20):
    USERS                6   0.007 s
    ...
============================================================
== By sql command + table (top 20):
    INSERT USERS             2   0.003 s
    SELECT USERS             2   0.002 s
    UPDATE USERS             1   0.001 s
    ...

== Totally captured 8 statement(s) in 0.008866 s

Working example - a long one

This working example illustrates use of some raw sqls and ORM objects (inspired by SqlAlchemy 1.3 tutorial):

from sqlalchemy_capture_sql import CaptureSqlStatements
from sqlalchemy import create_engine, text, Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker

Base = declarative_base()

class User(Base):
    __tablename__ = 'users'

    id = Column(Integer, primary_key=True)
    name = Column(String)
    fullname = Column(String)
    nickname = Column(String)


engine = create_engine('sqlite:///:memory:', echo=False)
conn = engine.connect()

Base.metadata.create_all(engine)
Session = sessionmaker(bind=engine)

session = Session()

# This orm operation won't be captured
user1 = User(name='ed', fullname='Ed Jones', nickname='edsnickname')
session.add(user1)
session.commit()

with CaptureSqlStatements(engine) as capture_stmts:
    # All commands within engine executed in this with block will be captured
    joe = User(name='joe', fullname='Joe Joey', nickname='joey')
    session.add(joe)
    session.commit()

    session.query(User).count()

    # one raw sql
    conn.execute(text("select 'In-capture'")).fetchall()

    joe.nickname = "Jo"
    session.commit()

    session.add(User(name='Wrong', fullname='Wrong', nickname='wrong'))
    session.rollback()

    jack = User(name='Jack', fullname='Jackson', nickname='jackie')
    session.add(jack)
    session.commit()

    session.delete(jack)
    session.commit()

# This orm operation won't be captured
session.add(User(name='Mick', fullname='Michael', nickname='mick'))
assert session.query(User).count(), 3

assert capture_stmts.get_counts("by_type"), {'INSERT': 2, 'SELECT': 4, 'UPDATE': 1, 'DELETE': 1}
assert capture_stmts.get_counts("by_table"), {"'IN-CAPTURE'": 1, '(SELECT': 1, 'USERS': 6}
assert capture_stmts.get_counts("by_type_and_table"), {
    'DELETE USERS': 1,
    'INSERT USERS': 2,
    "SELECT 'IN-CAPTURE'": 1,
    'SELECT (SELECT': 1,
    'SELECT USERS': 2,
    'UPDATE USERS': 1}

assert [st.stmt_repr for st in capture_stmts.statements], [
    'INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)',
    'SELECT FROM (SELECT users.id AS users_id, users.name AS users_name, '
        'users.fullname AS users_fullname, users.nickname AS users_nickname \n'
        'FROM users) AS anon_1',
    "select 'In-capture'",
    'SELECT FROM users \nWHERE users.id = ?',
    'UPDATE users SET nickname=? WHERE users.id = ?',
    'INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)',
    'SELECT FROM users \nWHERE users.id = ?',
    'DELETE FROM users WHERE users.id = ?']

Call to pretty-print function:

capture_stmts.pp()

Produces:

============================================================
== NOTE: duration measures time between 2 captures, it is not actual DB execution time.
== Totally captured 8 statement(s) in 0.008866 s:
  1. 0.0020 INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
     <- 'joe+Joe Joey+joey'
  2. 0.0005 SELECT FROM (SELECT users.id AS users_id, users.name AS users_name, us
  3. 0.0010 select 'In-capture'
  4. 0.0009 SELECT FROM users  WHERE users.id = ?
     <- '2'
  5. 0.0013 UPDATE users SET nickname=? WHERE users.id = ?
     <- 'Jo+2'
  6. 0.0014 INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
     <- 'Jack+Jackson+jackie'
  7. 0.0007 SELECT FROM users  WHERE users.id = ?
     <- '3'
  8. 0.0005 DELETE FROM users WHERE users.id = ?
     <- '3'

============================================================
== Slowest (top 5):
      1. INSERT USERS             1   0.002 s INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
      2. INSERT USERS             1   0.001 s INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
      3. UPDATE USERS             1   0.001 s UPDATE users SET nickname=? WHERE users.id = ?
      4. SELECT 'IN-CAPTURE'      1   0.001 s select 'In-capture'
      5. SELECT USERS             1   0.001 s SELECT FROM users
WHERE users.id = ?

============================================================
== By sql command (top 20):
    INSERT               2   0.003 s
    SELECT               4   0.003 s
    UPDATE               1   0.001 s
    DELETE               1   0.001 s

============================================================
== By table (top 20):
    USERS                6   0.007 s
    'IN-CAPTURE'         1   0.001 s
    (SELECT              1   0.000 s

============================================================
== By sql command + table (top 20):
    INSERT USERS             2   0.003 s
    SELECT USERS             2   0.002 s
    UPDATE USERS             1   0.001 s
    SELECT 'IN-CAPTURE'      1   0.001 s
    DELETE USERS             1   0.001 s
    SELECT (SELECT           1   0.000 s

============================================================
== Totally captured 8 statement(s) in 0.008866 s

One can iterate all capture statement objects:

for statement in capture_stmts:
    print(statement.statement)
    print(statement.tst_started)
    print(statement.duration)    # BEWARE: not actual DB execution time, 
                                           Rounded on 2 decimal places.
    print(statement.stmt_repr)   # Dropped list of columns from SELECT
    print(statement.parameters)
    print(statement.executemany) # bool
    print(statement.sql_type)    # BEWARE: do not rely on this
    print(statement.first_table) # BEWARE: do not rely on this

Misc

Other methods

Check also other instance methods of CaptureSqlStatements in order to get some stats in list/dict objects, for instance:

count() -> int
get_counts(name:StatName) -> Dict[str, int]
get_slowest(top:int=TOP_DEFAULT_SLOWEST) -> List[Stat]
get_statement_by_row_id(row_id:int) -> SqlStatement
get_stats(name: StatName, top:int=TOP_DEFAULT) -> Tuple[int, List[Stat]]
pp(verbose:bool=False, print_cmd:Callable=print)
report_counter(name: StatName, top:int=TOP_DEFAULT) -> str
report_slowest(verbose=False) -> str
report_stats(name: StatName, top:int=TOP_DEFAULT, fields:List[str]=AGG_FIELDS) -> str

Sqlite3 internal database

Internally library uses sqlite3 in memory database to store basic statement information. Database is used for statistics, aggregations and finding slowest queries, but one can use it for further analysis, e.g.:

cursor = capture_stmts.connection.cursor()
cursor.execute(f"select id, sql_type, first_table, duration from sql_statement order by duration desc limit 100")
for row in cursor.fetchall():
    row_id, sql_type, first_table, duration = row
    stmt = capture_stmts.get_statement_by_row_id(row_id)
    print(f"{sql_type} {first_table} {duration} : {stmt.statement} <- {stmt.parameters}")

SQLAlchemy statements logging

SQLAlchemy can log sql statements when log on "sqlalchemy.engine" level is set at least to INFO level:

import logging
logging.getLogger("sqlalchemy.engine").setLevel(logging.INFO) 

This functionalitiy also attached to CaptureSqlStatements as static methods in:

sqlalchemy_log_statements_enable()
sqlalchemy_log_statements_disable()

Alternative is providing echo=True attribute when creating SqlAlchemy.Engine with echo attribute, for instance:

engine = create_engine('sqlite:///...', echo=True)

Running tests

Do git clone of the repository, go to root folder and run:

python tests/test_basic.py

To see verbose output - pp() result, run like this:

VERBOSE=1 python tests/test_basic.py

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqlalchemy-capture-sql-0.2.4.tar.gz (11.5 kB view details)

Uploaded Source

Built Distribution

sqlalchemy_capture_sql-0.2.4-py3-none-any.whl (9.9 kB view details)

Uploaded Python 3

File details

Details for the file sqlalchemy-capture-sql-0.2.4.tar.gz.

File metadata

File hashes

Hashes for sqlalchemy-capture-sql-0.2.4.tar.gz
Algorithm Hash digest
SHA256 a75521087916bf0200a157c27c2a5d78d371e2171aa1063f2c1c42a3ed94ce17
MD5 7f8defb23fdd87879973e78570c9cba6
BLAKE2b-256 e142ee4ae3f5922277a2141c5aae90cc4786711368852023b4a34499da44516f

See more details on using hashes here.

File details

Details for the file sqlalchemy_capture_sql-0.2.4-py3-none-any.whl.

File metadata

File hashes

Hashes for sqlalchemy_capture_sql-0.2.4-py3-none-any.whl
Algorithm Hash digest
SHA256 156b949e8e035ddaa4fbca872ddd1989575db78428afe8783dd237d8dc73ccb8
MD5 0633fd0979d829c38f277d940a2711a8
BLAKE2b-256 95d88bb3b935c95e5f77a1a5dea3ccae8436d3b3bc57e3652fc9a56cc0a52b1c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page