A small library that enables capturing SQLAlchemy SQL statements / queries.
Project description
sqlalchemy-capture-sql
sqlalchemy-capture-sql is a library that enables capturing SQLAlchemy SQL statements / queries. Each SQL statement is captured along with passed parameters and approx. duration of execution time. It provides reporting and analysis functionalities, for instance: aggregations by type of sql command, table name, list of slowest queries and so on.
Motivation
Django has django.db.connection.queries connection property that enables user to display executed raw SQL queries (DEBUG mode only). Sometimes in debugging or unit testing this can serve the purpose to check and control number and type of sql statements executed for monitored case, along with allowed duration times. I wanted to create similar functionality for SQLAlchemy and provide additional statistics and analysis functions.
How it works
Internally it uses event.listens_for(engine, 'before_cursor_execute' event handler, e.g.:
@event.listens_for(engine, 'before_cursor_execute')
def capture_sa_statement_listener(...)
It simply collects all sql statements sent to event listener by SQLAlchemy (sent just before execution) and statements are collected in CaptureSqlStatements instance until .finish() method is called (or "with" context is exited).
Additionally it provides time measurement (see REMARKS), stats and formatting functions, see Examples.
REMARKS
Some remarks:
-
duration measurement is not actual DB execution time, system measures time between 2 sql statements captures
-
system tries to detect type of sql command (select, insert, ...) and first referenced table/db-object name, but the logic behind is very simple and one should not rely on it.
Tested and developed on Python 3.7+SQLAlchemy 1.3, but I assume it should work on later and probably some previous versions.
Installation
As usual:
pip install sqlalchemy-capture-sql
Usage example
Standard usage is by using python's with statement:
from sqlalchemy_capture_sql import CaptureSqlStatements
with CaptureSqlStatements(sqlalchemy_engine) as capture_stmts:
# put here calls to functions that issue sqlalchemy commands that
# produce some sql statements execution, for example factory-boy:
cpm = FactoryModel.create()
# call to .finish() automatically done on with ctx exit
capture_stmts.pp()
but standard style works too - finish() needs to be called:
capture_stmts = CaptureSqlStatements(sqlalchemy_engine)
# put here calls to functions that issue sqlalchemy commands that
# produce some sql statements execution, for example factory-boy:
cpm = FactoryModel.create()
# in this case .finish() needs to be called to stop capturing
capture_stmts.finish()
Calling pretty print function:
capture_stmts.pp()
the library will make full report, for instance:
============================================================
1. 0.0020 INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
<- 'joe+Joe Joey+joey'
2. 0.0009 SELECT FROM users WHERE users.id = ?
<- '2'
...
============================================================
== Slowest (top 5):
1. INSERT USERS 1 0.002 s INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
2. INSERT USERS 1 0.001 s INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
...
============================================================
== By sql command (top 20):
INSERT 2 0.003 s
SELECT 4 0.003 s
UPDATE 1 0.001 s
DELETE 1 0.001 s
============================================================
== By table (top 20):
USERS 6 0.007 s
...
============================================================
== By sql command + table (top 20):
INSERT USERS 2 0.003 s
SELECT USERS 2 0.002 s
UPDATE USERS 1 0.001 s
...
== Totally captured 8 statement(s) in 0.008866 s
Working example - a long one
This working example illustrates use of some raw sqls and ORM objects (inspired by SqlAlchemy 1.3 tutorial):
from sqlalchemy_capture_sql import CaptureSqlStatements
from sqlalchemy import create_engine, text, Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
Base = declarative_base()
class User(Base):
__tablename__ = 'users'
id = Column(Integer, primary_key=True)
name = Column(String)
fullname = Column(String)
nickname = Column(String)
engine = create_engine('sqlite:///:memory:', echo=False)
conn = engine.connect()
Base.metadata.create_all(engine)
Session = sessionmaker(bind=engine)
session = Session()
# This orm operation won't be captured
user1 = User(name='ed', fullname='Ed Jones', nickname='edsnickname')
session.add(user1)
session.commit()
with CaptureSqlStatements(engine) as capture_stmts:
# All commands within engine executed in this with block will be captured
joe = User(name='joe', fullname='Joe Joey', nickname='joey')
session.add(joe)
session.commit()
session.query(User).count()
# one raw sql
conn.execute(text("select 'In-capture'")).fetchall()
joe.nickname = "Jo"
session.commit()
session.add(User(name='Wrong', fullname='Wrong', nickname='wrong'))
session.rollback()
jack = User(name='Jack', fullname='Jackson', nickname='jackie')
session.add(jack)
session.commit()
session.delete(jack)
session.commit()
# This orm operation won't be captured
session.add(User(name='Mick', fullname='Michael', nickname='mick'))
assert session.query(User).count(), 3
assert capture_stmts.get_counts("by_type"), {'INSERT': 2, 'SELECT': 4, 'UPDATE': 1, 'DELETE': 1}
assert capture_stmts.get_counts("by_table"), {"'IN-CAPTURE'": 1, '(SELECT': 1, 'USERS': 6}
assert capture_stmts.get_counts("by_type_and_table"), {
'DELETE USERS': 1,
'INSERT USERS': 2,
"SELECT 'IN-CAPTURE'": 1,
'SELECT (SELECT': 1,
'SELECT USERS': 2,
'UPDATE USERS': 1}
assert [st.stmt_repr for st in capture_stmts.statements], [
'INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)',
'SELECT FROM (SELECT users.id AS users_id, users.name AS users_name, '
'users.fullname AS users_fullname, users.nickname AS users_nickname \n'
'FROM users) AS anon_1',
"select 'In-capture'",
'SELECT FROM users \nWHERE users.id = ?',
'UPDATE users SET nickname=? WHERE users.id = ?',
'INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)',
'SELECT FROM users \nWHERE users.id = ?',
'DELETE FROM users WHERE users.id = ?']
Call to pretty-print function:
capture_stmts.pp()
Produces:
============================================================
== NOTE: duration measures time between 2 captures, it is not actual DB execution time.
== Totally captured 8 statement(s) in 0.008866 s:
1. 0.0020 INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
<- 'joe+Joe Joey+joey'
2. 0.0005 SELECT FROM (SELECT users.id AS users_id, users.name AS users_name, us
3. 0.0010 select 'In-capture'
4. 0.0009 SELECT FROM users WHERE users.id = ?
<- '2'
5. 0.0013 UPDATE users SET nickname=? WHERE users.id = ?
<- 'Jo+2'
6. 0.0014 INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
<- 'Jack+Jackson+jackie'
7. 0.0007 SELECT FROM users WHERE users.id = ?
<- '3'
8. 0.0005 DELETE FROM users WHERE users.id = ?
<- '3'
============================================================
== Slowest (top 5):
1. INSERT USERS 1 0.002 s INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
2. INSERT USERS 1 0.001 s INSERT INTO users (name, fullname, nickname) VALUES (?, ?, ?)
3. UPDATE USERS 1 0.001 s UPDATE users SET nickname=? WHERE users.id = ?
4. SELECT 'IN-CAPTURE' 1 0.001 s select 'In-capture'
5. SELECT USERS 1 0.001 s SELECT FROM users
WHERE users.id = ?
============================================================
== By sql command (top 20):
INSERT 2 0.003 s
SELECT 4 0.003 s
UPDATE 1 0.001 s
DELETE 1 0.001 s
============================================================
== By table (top 20):
USERS 6 0.007 s
'IN-CAPTURE' 1 0.001 s
(SELECT 1 0.000 s
============================================================
== By sql command + table (top 20):
INSERT USERS 2 0.003 s
SELECT USERS 2 0.002 s
UPDATE USERS 1 0.001 s
SELECT 'IN-CAPTURE' 1 0.001 s
DELETE USERS 1 0.001 s
SELECT (SELECT 1 0.000 s
============================================================
== Totally captured 8 statement(s) in 0.008866 s
One can iterate all capture statement objects:
for statement in capture_stmts:
print(statement.statement)
print(statement.tst_started)
print(statement.duration) # BEWARE: not actual DB execution time,
Rounded on 2 decimal places.
print(statement.stmt_repr) # Dropped list of columns from SELECT
print(statement.parameters)
print(statement.executemany) # bool
print(statement.sql_type) # BEWARE: do not rely on this
print(statement.first_table) # BEWARE: do not rely on this
Misc
Other methods
Check also other instance methods of CaptureSqlStatements in order to get some stats in list/dict objects, for instance:
count() -> int
get_counts(name:StatName) -> Dict[str, int]
get_slowest(top:int=TOP_DEFAULT_SLOWEST) -> List[Stat]
get_statement_by_row_id(row_id:int) -> SqlStatement
get_stats(name: StatName, top:int=TOP_DEFAULT) -> Tuple[int, List[Stat]]
pp(verbose:bool=False, print_cmd:Callable=print)
report_counter(name: StatName, top:int=TOP_DEFAULT) -> str
report_slowest(verbose=False) -> str
report_stats(name: StatName, top:int=TOP_DEFAULT, fields:List[str]=AGG_FIELDS) -> str
Sqlite3 internal database
Internally library uses sqlite3 in memory database to store basic statement information. Database is used for statistics, aggregations and finding slowest queries, but one can use it for further analysis, e.g.:
cursor = capture_stmts.connection.cursor()
cursor.execute(f"select id, sql_type, first_table, duration from sql_statement order by duration desc limit 100")
for row in cursor.fetchall():
row_id, sql_type, first_table, duration = row
stmt = capture_stmts.get_statement_by_row_id(row_id)
print(f"{sql_type} {first_table} {duration} : {stmt.statement} <- {stmt.parameters}")
SQLAlchemy statements logging
SQLAlchemy can log sql statements when log on "sqlalchemy.engine" level is set at least to INFO level:
import logging
logging.getLogger("sqlalchemy.engine").setLevel(logging.INFO)
This functionalitiy also attached to CaptureSqlStatements as static methods in:
sqlalchemy_log_statements_enable()
sqlalchemy_log_statements_disable()
Alternative is providing echo=True attribute when creating SqlAlchemy.Engine with echo attribute, for instance:
engine = create_engine('sqlite:///...', echo=True)
Running tests
Do git clone of the repository, go to root folder and run:
python tests/test_basic.py
To see verbose output - pp() result, run like this:
VERBOSE=1 python tests/test_basic.py
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file sqlalchemy-capture-sql-0.2.4.tar.gz
.
File metadata
- Download URL: sqlalchemy-capture-sql-0.2.4.tar.gz
- Upload date:
- Size: 11.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.7.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a75521087916bf0200a157c27c2a5d78d371e2171aa1063f2c1c42a3ed94ce17 |
|
MD5 | 7f8defb23fdd87879973e78570c9cba6 |
|
BLAKE2b-256 | e142ee4ae3f5922277a2141c5aae90cc4786711368852023b4a34499da44516f |
File details
Details for the file sqlalchemy_capture_sql-0.2.4-py3-none-any.whl
.
File metadata
- Download URL: sqlalchemy_capture_sql-0.2.4-py3-none-any.whl
- Upload date:
- Size: 9.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.7.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 156b949e8e035ddaa4fbca872ddd1989575db78428afe8783dd237d8dc73ccb8 |
|
MD5 | 0633fd0979d829c38f277d940a2711a8 |
|
BLAKE2b-256 | 95d88bb3b935c95e5f77a1a5dea3ccae8436d3b3bc57e3652fc9a56cc0a52b1c |