Skip to main content

A library to filter SQLAlchemy queries.

Project description

Filter, sort and paginate SQLAlchemy query objects. Ideal for exposing these actions over a REST API.

https://img.shields.io/pypi/v/sqlalchemy-filters.svg https://img.shields.io/pypi/pyversions/sqlalchemy-filters.svg https://travis-ci.org/juliotrigo/sqlalchemy-filters.svg?branch=master

Filtering

Assuming that we have a SQLAlchemy query object:

from sqlalchemy import Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base


class Base(object):
    id = Column(Integer, primary_key=True)
    name = Column(String(50), nullable=False)
    count = Column(Integer, nullable=True)


Base = declarative_base(cls=Base)


class Foo(Base):

    __tablename__ = 'foo'

# ...

query = session.query(Foo)

Then we can apply filters to that query object (multiple times):

from sqlalchemy_filters import apply_filters

# `query` should be a SQLAlchemy query object

filter_spec = [{'field': 'name', 'op': '==', 'value': 'name_1'}]
filtered_query = apply_filters(query, filter_spec)

more_filters = [{'field': 'foo_id', 'op': 'is_not_null'}]
filtered_query = apply_filters(filtered_query, more_filters)

result = filtered_query.all()

It is also possible to filter queries that contain multiple models, including joins:

class Bar(Base):

    __tablename__ = 'bar'
    foo_id = Column(Integer, ForeignKey('foo.id'))
query = session.query(Foo).join(Bar)

filter_spec = [
    {'model': 'Foo', field': 'name', 'op': '==', 'value': 'name_1'},
    {'model': 'Bar', field': 'count', 'op': '>=', 'value': 5},
]
filtered_query = apply_filters(query, filter_spec)

result = filtered_query.all()

apply_filters will attempt to automatically join models to query if they’re not already present and a model-specific filter is supplied. For example, the value of filtered_query in the following two code blocks is identical:

query = session.query(Foo).join(Bar)  # join pre-applied to query

filter_spec = [
    {'model': 'Foo', field': 'name', 'op': '==', 'value': 'name_1'},
    {'model': 'Bar', field': 'count', 'op': '>=', 'value': 5},
]
filtered_query = apply_filters(query, filter_spec)
query = session.query(Foo)  # join to Bar will be automatically applied

filter_spec = [
    {field': 'name', 'op': '==', 'value': 'name_1'},
    {'model': 'Bar', field': 'count', 'op': '>=', 'value': 5},
]
filtered_query = apply_filters(query, filter_spec)

The automatic join is only possible if sqlalchemy can implictly determine the condition for the join, for example because of a foreign key relationship.

Automatic joins allow flexibility for clients to filter and sort by related objects without specifying all possible joins on the server beforehand.

Note that first filter of the second block does not specify a model. It is implictly applied to the Foo model because that is the only model in the original query passed to apply_filters.

It is also possible to apply filters to queries defined by fields or functions:

query_alt_1 = session.query(Foo.id, Foo.name)
query_alt_2 = session.query(func.count(Foo.id))

Restricted Loads

You can restrict the fields that SQLAlchemy loads from the database by using the apply_loads function:

query = session.query(Foo, Bar).join(Bar)
load_spec = [
    {'model': 'Foo', 'fields': ['name']},
    {'model': 'Bar', 'fields': ['count']}
]
query = apply_loads(query, load_spec)  # will load only Foo.name and Bar.count

The effect of the apply_loads function is to _defer_ the load of any other fields to when/if they’re accessed, rather than loading them when the query is executed. It only applies to fields that would be loaded during normal query execution.

Effect on joined queries

The default SQLAlchemy join is lazy, meaning that columns from the joined table are loaded only when required. Therefore apply_loads has limited effect in the following scenario:

query = session.query(Foo).join(Bar)
load_spec = [
    {'model': 'Foo', 'fields': ['name']}
    {'model': 'Bar', 'fields': ['count']}  # ignored
]
query = apply_loads(query, load_spec)  # will load only Foo.name

apply_loads cannot be applied to columns that are loaded as joined eager loads. This is because a joined eager load does not add the joined model to the original query, as explained here

The following would not prevent all columns from Bar being eagerly loaded:

query = session.query(Foo).options(joinedload(Foo.bar))
load_spec = [
    {'model': 'Foo', 'fields': ['name']}
    {'model': 'Bar', 'fields': ['count']}
]
query = apply_loads(query, load_spec)

If you wish to perform a joined load with restricted columns, you must specify the columns as part of the joined load, rather than with apply_loads:

query = session.query(Foo).options(joinedload(Bar).load_only('count'))
load_spec = [
    {'model': 'Foo', 'fields': ['name']}
]
query = apply_loads(query. load_spec)  # will load ony Foo.name and Bar.count

Sort

from sqlalchemy_filters import apply_sort

# `query` should be a SQLAlchemy query object

sort_spec = [
    {'model': 'Foo', field': 'name', 'direction': 'asc'},
    {'model': 'Bar', field': 'id', 'direction': 'desc'},
]
sorted_query = apply_sort(query, sort_spec)

result = sorted_query.all()

apply_sort will attempt to automatically join models to query if they’re not already present and a model-specific sort is supplied. The behaviour is the same as in apply_filters.

This allows flexibility for clients to sort by fields on related objects without specifying all possible joins on the server beforehand.

Pagination

from sqlalchemy_filters import apply_pagination

# `query` should be a SQLAlchemy query object

query, pagination = apply_pagination(query, page_number=1, page_size=10)

page_size, page_number, num_pages, total_results = pagination

assert 10 == len(query)
assert 10 == page_size == pagination.page_size
assert 1 == page_number == pagination.page_number
assert 3 == num_pages == pagination.num_pages
assert 22 == total_results == pagination.total_results

Filters format

Filters must be provided in a list and will be applied sequentially. Each filter will be a dictionary element in that list, using the following format:

filter_spec = [
    {'model': 'model_name', 'field': 'field_name', 'op': '==', 'value': 'field_value'},
    {'model': 'model_name', 'field': 'field_2_name', 'op': '!=', 'value': 'field_2_value'},
    # ...
]

The model key is optional if the original query being filtered only applies to one model.

If there is only one filter, the containing list may be omitted:

filter_spec = {'field': 'field_name', 'op': '==', 'value': 'field_value'}

Where field is the name of the field that will be filtered using the operator provided in op (optional, defaults to ==) and the provided value (optional, depending on the operator).

This is the list of operators that can be used:

  • is_null

  • is_not_null

  • ==, eq

  • !=, ne

  • >, gt

  • <, lt

  • >=, ge

  • <=, le

  • like

  • ilike

  • in

  • not_in

Boolean Functions

and, or, and not functions can be used and nested within the filter specification:

filter_spec = [
    {
        'or': [
            {
                'and': [
                    {'field': 'field_name', 'op': '==', 'value': 'field_value'},
                    {'field': 'field_2_name', 'op': '!=', 'value': 'field_2_value'},
                ]
            },
            {
                'not': [
                    {'field': 'field_3_name', 'op': '==', 'value': 'field_3_value'}
                ]
            },
        ],
    }
]

Note: or and and must reference a list of at least one element. not must reference a list of exactly one element.

Sort format

Sort elements must be provided as dictionaries in a list and will be applied sequentially:

sort_spec = [
    {'model': 'Foo', 'field': 'name', 'direction': 'asc'},
    {'model': 'Bar', 'field': 'id', 'direction': 'desc'},
    # ...
]

Where field is the name of the field that will be sorted using the provided direction.

The model key is optional if the original query being sorted only applies to one model.

Running tests

The default configuration uses SQLite, MySQL (if the driver is installed, which is the case when tox is used) and PostgreSQL (if the driver is installed, which is the case when tox is used) to run the tests, with the following URIs:

sqlite+pysqlite:///test_sqlalchemy_filters.db
mysql+mysqlconnector://root:@localhost:3306/test_sqlalchemy_filters
postgresql+psycopg2://postgres:@localhost:5432/test_sqlalchemy_filters?client_encoding=utf8'

A test database will be created, used during the tests and destroyed afterwards for each RDBMS configured.

There are Makefile targets to run docker containers locally for both MySQL and PostgreSQL, using the default ports and configuration:

$ make docker-mysql-run
$ make docker-postgres-run

To run the tests locally:

$ # Create/activate a virtual environment
$ pip install tox
$ tox

There are some other Makefile targets that can be used to run the tests:

$ # using default settings
$ make test
$ make coverage

$ # overriding DB parameters
$ ARGS='--mysql-test-db-uri mysql+mysqlconnector://root:@192.168.99.100:3340/test_sqlalchemy_filters' make test
$ ARGS='--sqlite-test-db-uri sqlite+pysqlite:///test_sqlalchemy_filters.db' make test

$ ARGS='--mysql-test-db-uri mysql+mysqlconnector://root:@192.168.99.100:3340/test_sqlalchemy_filters' make coverage
$ ARGS='--sqlite-test-db-uri sqlite+pysqlite:///test_sqlalchemy_filters.db' make coverage

Database management systems

The following RDBMS are supported (tested):

  • SQLite

  • MySQL

  • PostgreSQL

Python 2

There is no active support for python 2, however it is compatible as of February 2019, if you install funcsigs.

License

Apache 2.0. See LICENSE for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqlalchemy-filters-0.9.0.tar.gz (15.0 kB view details)

Uploaded Source

Built Distribution

sqlalchemy_filters-0.9.0-py3-none-any.whl (13.1 kB view details)

Uploaded Python 3

File details

Details for the file sqlalchemy-filters-0.9.0.tar.gz.

File metadata

  • Download URL: sqlalchemy-filters-0.9.0.tar.gz
  • Upload date:
  • Size: 15.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for sqlalchemy-filters-0.9.0.tar.gz
Algorithm Hash digest
SHA256 020656e98a459ebb6d0a4d72b78e966e3335571bb631c5012605b6ce4b8efcbd
MD5 849596443d599e48edddd7fadabc213f
BLAKE2b-256 c8504f918e8f2c5731b3d4d9e125f5238bfeabd4a0de7a77d4aaaef99f0cff82

See more details on using hashes here.

File details

Details for the file sqlalchemy_filters-0.9.0-py3-none-any.whl.

File metadata

  • Download URL: sqlalchemy_filters-0.9.0-py3-none-any.whl
  • Upload date:
  • Size: 13.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.1

File hashes

Hashes for sqlalchemy_filters-0.9.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d122f5b39ab6837c5b16b3273f506fc6e56ce01ff0cbcb39207f4c075c73d420
MD5 7561ca65d07a78816b1cf95ba45a47ac
BLAKE2b-256 7df9588b64a8611b19649689c05b13518441acb15ef27be49f8c8698089296d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page