Skip to main content

Taking the Spark out of PySpark by converting to SQL

Project description

SQLFrame Logo

SQLFrame implements the PySpark DataFrame API in order to enable running transformation pipelines directly on database engines - no Spark clusters or dependencies required.

SQLFrame currently supports the following engines (many more in development):

SQLFrame also has a "Standalone" session that be used to generate SQL without any connection to a database engine.

SQLFrame is great for:

  • Users who want to run PySpark DataFrame code without having to use a Spark cluster
  • Users who want a SQL representation of their DataFrame code for debugging or sharing with others
  • Users who want a DataFrame API that leverages the full power of their engine to do the processing

Installation

# BigQuery
pip install "sqlframe[bigquery]"
# DuckDB
pip install "sqlframe[duckdb]"
# Postgres
pip install "sqlframe[postgres]"
# Standalone
pip install sqlframe

See specific engine documentation for additional setup instructions.

Configuration

SQLFrame generates consistently accurate yet complex SQL for engine execution. However, when using df.sql(), it produces more human-readable SQL. For details on how to configure this output and leverage OpenAI to enhance the SQL, see Generated SQL Configuration.

Example Usage

from sqlframe.bigquery import BigQuerySession
from sqlframe.bigquery import functions as F
from sqlframe.bigquery import Window

session = BigQuerySession()
table_path = "bigquery-public-data.samples.natality"
# Top 5 years with the greatest year-over-year % change in new families with single child
df = (
    session.table(table_path)
    .where(F.col("ever_born") == 1)
    .groupBy("year")
    .agg(F.count("*").alias("num_single_child_families"))
    .withColumn(
        "last_year_num_single_child_families", 
        F.lag(F.col("num_single_child_families"), 1).over(Window.orderBy("year"))
    )
    .withColumn(
        "percent_change", 
        (F.col("num_single_child_families") - F.col("last_year_num_single_child_families")) 
        / F.col("last_year_num_single_child_families")
    )
    .orderBy(F.abs(F.col("percent_change")).desc())
    .select(
        F.col("year").alias("year"),
        F.format_number("num_single_child_families", 0).alias("new families single child"),
        F.format_number(F.col("percent_change") * 100, 2).alias("percent change"),
    )
    .limit(5)
)
>>> df.sql()
WITH `t94228` AS (
  SELECT
    `natality`.`year` AS `year`,
    COUNT(*) AS `num_single_child_families`
  FROM `bigquery-public-data`.`samples`.`natality` AS `natality`
  WHERE
    `natality`.`ever_born` = 1
  GROUP BY
    `natality`.`year`
), `t39093` AS (
  SELECT
    `t94228`.`year` AS `year`,
    `t94228`.`num_single_child_families` AS `num_single_child_families`,
    LAG(`t94228`.`num_single_child_families`, 1) OVER (ORDER BY `t94228`.`year`) AS `last_year_num_single_child_families`
  FROM `t94228` AS `t94228`
)
SELECT
  `t39093`.`year` AS `year`,
  FORMAT('%\'.0f', ROUND(CAST(`t39093`.`num_single_child_families` AS FLOAT64), 0)) AS `new families single child`,
  FORMAT('%\'.2f', ROUND(CAST((((`t39093`.`num_single_child_families` - `t39093`.`last_year_num_single_child_families`) / `t39093`.`last_year_num_single_child_families`) * 100) AS FLOAT64), 2)) AS `percent change`
FROM `t39093` AS `t39093`
ORDER BY
  ABS(`percent_change`) DESC
LIMIT 5
>>> df.show()
+------+---------------------------+----------------+
| year | new families single child | percent change |
+------+---------------------------+----------------+
| 1989 |         1,650,246         |     25.02      |
| 1974 |          783,448          |     14.49      |
| 1977 |         1,057,379         |     11.38      |
| 1985 |         1,308,476         |     11.15      |
| 1975 |          868,985          |     10.92      |
+------+---------------------------+----------------+

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqlframe-1.5.0.tar.gz (17.1 MB view details)

Uploaded Source

Built Distribution

sqlframe-1.5.0-py3-none-any.whl (118.9 kB view details)

Uploaded Python 3

File details

Details for the file sqlframe-1.5.0.tar.gz.

File metadata

  • Download URL: sqlframe-1.5.0.tar.gz
  • Upload date:
  • Size: 17.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.12

File hashes

Hashes for sqlframe-1.5.0.tar.gz
Algorithm Hash digest
SHA256 edb2b8ef2ab86b12f9eb24ad0599d4e16258c175c6aa0ce447ab5448276cabfe
MD5 5abff8df17af73e84da0fe2ec1554655
BLAKE2b-256 7ef3de93de95d7cc0ab5de00e8430d207927101d585dfd6773195fc0be415e9e

See more details on using hashes here.

File details

Details for the file sqlframe-1.5.0-py3-none-any.whl.

File metadata

  • Download URL: sqlframe-1.5.0-py3-none-any.whl
  • Upload date:
  • Size: 118.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.12

File hashes

Hashes for sqlframe-1.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 322c92709c0ccb44d4d80d6a4f0da7b6df5471f54bb1ca3f101732b8bc6d996d
MD5 a12f1671ef381f9a01815d7dc5b0609a
BLAKE2b-256 3e0c78c112c83c13531583a5b6cffb02a4010041a287c8519b1b65805fcfba38

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page